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Abstract

Various set-theoretic models have been proposed to handle uncertainty, including Fuzzy Sets [1], Intuitionis-
tic Fuzzy Sets [2], Neutrosophic Sets [3, 4], and Soft Sets [5, 6]. Rough set theory provides a mathematical
framework for approximating subsets using lower and upper bounds defined by equivalence relations,
effectively capturing uncertainty in classification and data analysis [7, 8]. Building on these foundational
ideas, further generalizations such as Hyperrough Sets and Superhyperrough Sets have been developed.
In this paper, we introduce newly defined concepts of the Intuitionistic Hyperrough Set, One–directional
S–Hyperrough Set, Tolerance Hyperrough Set, and Dynamic Hyperrough Set. These are extended versions
of the Intuitionistic Rough Set, One–directional S–rough Set, Tolerance Rough Set, and Dynamic Rough
Set, respectively, constructed using the framework of Hyperrough Sets. Additionally, we explore extensions
constructed using the Superhyperrough Set framework.
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1|Preliminaries and Definitions
This section provides an introduction to the foundational concepts and definitions required for the discussions in
this paper. Throughout this paper, all sets under consideration are assumed to be finite. For further details on
each concept and the associated operations, readers are encouraged to consult the relevant references as needed.

1.1|Rough Set
A rough set approximates a subset using lower and upper bounds determined by equivalence classes, thereby
capturing both certainty and uncertainty in membership [7, 9].

[Set] [10] A set is a well-defined collection of distinct elements or objects. If a is an element of a set A, we write
a ∈ A; otherwise, we write a /∈ A.

[Subset] [10] Let A and B be sets. A is called a subset of B, denoted A ⊆ B, if every element of A is also an
element of B. If A ⊆ B but A ̸= B, then A is called a proper subset of B, denoted A ⊂ B.

[Empty Set] [10] The empty set, denoted by ∅, is the unique set containing no elements. Formally, for any set A,
∅ ⊆ A.

[Universal Set] A universal set, denoted by U , is the set that contains all elements under consideration in a
particular context. Every set discussed is assumed to be a subset of U .

[Rough Set Approximation] [11] Let X be a nonempty universe of discourse, and let R ⊆ X ×X be an equivalence
relation (also called an indiscernibility relation) on X. The relation R partitions X into disjoint equivalence
classes, denoted by [x]R for each x ∈ X, where

[x]R = {y ∈ X | (x, y) ∈ R}.

For any subset U ⊆ X, the lower approximation U and the upper approximation U are defined by:

(1) Lower Approximation:
U = {x ∈ X | [x]R ⊆ U}.

This set contains all elements whose entire equivalence class is contained within U ; these elements
definitely belong to U .

(2) Upper Approximation:
U = {x ∈ X | [x]R ∩ U ̸= ∅}.

This set contains all elements whose equivalence class has a nonempty intersection with U ; these elements
possibly belong to U .

Thus, the pair (U, U) forms the rough set representation of U , satisfying

U ⊆ U ⊆ U.

1.2|Intuitionistic Rough Sets
We define Intuitionistic Rough Sets as follows [12, 13, 14].

[Intuitionistic Rough Set] (cf. [12, 14])

Let U be a nonempty universe and let R be an equivalence relation on U , which partitions U into equivalence
classes {[x]R : x ∈ U}. For any subset X ⊆ U , define its lower approximation and upper approximation by

X =
{

x ∈ U
∣∣ [x]R ⊆ X

}
, X =

{
x ∈ U

∣∣ [x]R ∩ X ̸= ∅
}

.

An intuitionistic rough set corresponding to X is the ordered pair〈
µX , νX

〉
,



where µX : U −→ [0, 1] νX : U −→ [0, 1] are the membership and non-membership functions, respectively,
satisfying

0 ≤ µX(x) + νX(x) ≤ 1 for every x ∈ U.

The hesitation margin (or uncertainty) at x is defined by

πX(x) = 1 −
(
µX(x) + νX(x)

)
.

In the standard construction, µX and νX are assigned as follows:

(1) If x ∈ X, then x belongs entirely to X. Set

µX(x) = 1, νX(x) = 0.

(2) If x /∈ X, then the equivalence class [x]R does not intersect X. In this case, set

µX(x) = 0, νX(x) = 1.

(3) If x ∈ X \ X (the boundary region), assign real values such that

0 < µX(x) < 1, 0 < νX(x) < 1, µX(x) + νX(x) < 1.

[Example of an Intuitionistic Rough Set] Consider the universe

U = {a, b, c, d},

and suppose that an equivalence relation R partitions U into the following classes:

[a]R = {a, b}, [c]R = {c}, [d]R = {d}.

Let the set X ⊂ U be defined as
X = {a, c}.

Then, the lower and upper approximations of X are:

X = { x ∈ U | [x]R ⊆ X } = {c},

X = { x ∈ U | [x]R ∩ X ̸= ∅ } = {a, b, c}.

Now, define the membership and non-membership functions µX and νX as follows:

• For x ∈ X (i.e., x = c):
µX(c) = 1, νX(c) = 0.

• For x /∈ X (i.e., x = d):
µX(d) = 0, νX(d) = 1.

• For x ∈ X \ X (i.e., x = a and x = b, noting that a and b belong to the same equivalence class {a, b}):
choose

µX(a) = µX(b) = 0.5, νX(a) = νX(b) = 0.3.

Then, the hesitation margin for these elements is

πX(a) = πX(b) = 1 − (0.5 + 0.3) = 0.2.

Thus, the intuitionistic rough set corresponding to X is given by:

⟨µX , νX⟩ = {(a, 0.5, 0.3), (b, 0.5, 0.3), (c, 1, 0), (d, 0, 1)}.
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1.3|One-directional S-rough Sets
We define One-directional S-rough Sets as follows [15, 16, 17].

[One-directional S-rough Set] [18] Let U be a non-empty universe and let R be an equivalence relation on U with
equivalence classes denoted by [x] for each x ∈ U . Let F be a non-empty family of element transfer functions
and fix some f ∈ F . For any subset X ⊂ U , define the f -extension of X by

Xf = { u ∈ U \ X | f(u) ∈ X }.

Then the one-directional S-set of X is given by

X◦ = X ∪ Xf .

Next, define the lower approximation and upper approximation of X◦ (with respect to the pair (R, F )) by

(R, F )∗(X◦) =
⋃

{ [x] | x ∈ U, [x] ⊆ X◦ },

(R, F )◦(X◦) =
⋃

{ [x] | x ∈ U, [x] ∩ X◦ ̸= ∅ }.

The ordered pair (
(R, F )∗(X◦), (R, F )◦(X◦)

)
is called the one-directional S-rough set of X◦. Its boundary region is defined as

BnR(X◦) = (R, F )◦(X◦) \ (R, F )∗(X◦).

[A Concrete Example of a One-directional S-rough Set] Consider the universe

U = {1, 2, 3, 4, 5},

with an equivalence relation R that partitions U into the equivalence classes

[1] = {1, 2}, [3] = {3, 4}, [5] = {5}.

Let
X = {1, 3}.

Define an element transfer function f (from a family F ) by specifying

f(2) = 1, f(4) is not defined or does not yield an element in X.

Then the f -extension of X is
Xf = { u ∈ U \ X | f(u) ∈ X } = {2},

so that the one-directional S-set of X is

X◦ = X ∪ Xf = {1, 2, 3}.

Next, we compute the approximations with respect to R:

• The lower approximation is

(R, F )∗(X◦) =
⋃

{[x] | [x] ⊆ {1, 2, 3}}.

Notice that the equivalence class [1] = {1, 2} is fully contained in X◦, whereas [3] = {3, 4} is not (since
4 /∈ X◦). Hence,

(R, F )∗(X◦) = [1] = {1, 2}.

• The upper approximation is

(R, F )◦(X◦) =
⋃

{[x] | [x] ∩ {1, 2, 3} ≠ ∅}.

Both [1] and [3] have a non-empty intersection with X◦ (since 1 ∈ [1] and 3 ∈ [3]); thus,

(R, F )◦(X◦) = [1] ∪ [3] = {1, 2} ∪ {3, 4} = {1, 2, 3, 4}.
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Therefore, the one-directional S-rough set of X is given by(
(R, F )∗(X◦), (R, F )◦(X◦)

)
=

(
{1, 2}, {1, 2, 3, 4}

)
,

and its boundary region is
BnR(X◦) = {1, 2, 3, 4} \ {1, 2} = {3, 4}.

1.4|Tolerance Rough Sets
We define Tolerance Rough Sets as follows [19, 20, 21].

[Tolerance Rough Set] [22] Let U be a nonempty universe and let P be a set of attributes. For each attribute
a ∈ P , define the similarity measure

SIMa(x, y) = 1 − |a(x) − a(y)|
amax − amin

,

where amax and amin denote the maximum and minimum values of a over U , respectively. Given a threshold
τ ∈ [0, 1], we define the tolerance (or similarity) relation SIMP,τ on U by

(x, y) ∈ SIMP,τ ⇐⇒
∏
a∈P

SIMa(x, y) ≥ τ.

For any x ∈ U , denote its tolerance class by
SIMP,τ (x) = {y ∈ U | (x, y) ∈ SIMP,τ }.

Then, for any subset X ⊆ U the tolerance lower approximation of X is defined as
Pτ X = {x ∈ U | SIMP,τ (x) ⊆ X},

and the tolerance upper approximation of X is defined as
P τ X = {x ∈ U | SIMP,τ (x) ∩ X ̸= ∅}.

The ordered pair
⟨Pτ X, P τ X⟩

is called the tolerance rough set of X with respect to the tolerance relation SIMP,τ .

[A Concrete Example of a Tolerance Rough Set] Assume a universe
U = {x1, x2, x3},

with a single real-valued attribute a (so that P = {a}). Suppose the attribute values are given by
a(x1) = 1, a(x2) = 1.2, a(x3) = 2.

Then, amin = 1 and amax = 2. For any x, y ∈ U the similarity measure becomes
SIMa(x, y) = 1 − |a(x) − a(y)|.

Thus, we obtain:
SIMa(x1, x2) = 1 − |1 − 1.2| = 0.8, SIMa(x1, x3) = 1 − |1 − 2| = 0, SIMa(x2, x3) = 1 − |1.2 − 2| = 0.2.

Now, choose the threshold τ = 0.5. Then the tolerance relation SIM{a},τ is defined by
(x, y) ∈ SIM{a},τ ⇐⇒ SIMa(x, y) ≥ 0.5.

Hence, the tolerance classes for each element are:
SIM{a},τ (x1) = {x1, x2}, SIM{a},τ (x2) = {x1, x2}, SIM{a},τ (x3) = {x3}.

Let X = {x1}. Then the tolerance approximations are computed as follows:
Pτ X = {x ∈ U | SIM{a},τ (x) ⊆ {x1}}.

Since for x1 we have SIM{a},τ (x1) = {x1, x2} ̸⊆ {x1} and similarly for x2 and x3, it follows that
Pτ X = ∅.
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On the other hand, the tolerance upper approximation is
P τ X = {x ∈ U | SIM{a},τ (x) ∩ {x1} ≠ ∅}.

We have:
SIM{a},τ (x1) ∩ {x1} = {x1} ≠ ∅, SIM{a},τ (x2) ∩ {x1} = {x1} ≠ ∅,

and
SIM{a},τ (x3) ∩ {x1} = ∅.

Thus,
P τ X = {x1, x2}.

The resulting tolerance rough set of X is therefore given by
⟨Pτ X, P τ X⟩ = ⟨∅, {x1, x2}⟩.

1.5|Dynamic Rough Set
We define Dynamic Rough Sets as follows [23, 24, 25].

[Dynamic Rough Set] [23] Let A = (U, P ) be an information system where

• U is a nonempty finite set of objects, and

• P is a set of attributes.

Let X ⊆ U be the target (concept) set and let T ⊆ P be a subset of attributes chosen as dynamic criteria.
Moreover, let d+

T and d−
T be fixed threshold constants (called, respectively, the inward transfer standard and the

outward transfer standard).

For each object x ∈ U , we define two coefficients:
ρ+

T (x) = (inward transfer coefficient)
ρ−

T (x) = (outward transfer coefficient)
which quantitatively measure, with respect to the dynamic criteria T , the potential for an object currently not in
X to be included, and for an object in X to be excluded, respectively. (In practical applications these coefficients
are often computed by aggregating measures on each attribute in T or, in many cases, are simply chosen as
constant values for simplicity.)

Then we define:

(1) The inflated dynamic main set (or candidate addition set)
IT (X) = {x ∈ U \ X : ρ+

T (x) ≥ d+
T }.

(2) The contracted dynamic set (or candidate removal set)
CT (X) = {x ∈ X : ρ−

T (x) ≥ d−
T }.

(3) The resulting two-direction dynamic set is defined as
DT (X) =

(
X ∪ IT (X)

)
\ CT (X).

Finally, if we take a subset Q ⊆ P of attributes and use it to induce an equivalence relation on U (with
equivalence classes denoted by [x]Q), the dynamic rough approximations of X are given by

DT (X) = {x ∈ U : [x]Q ⊆ DT (X)} (dynamic lower approximation)
DT (X) = {x ∈ U : [x]Q ∩ DT (X) ̸= ∅} (dynamic upper approximation).

Consider an information system A = (U, P ) with
U = {u1, u2, u3, u4} and P = {p1, p2}.

Assume that the initial target set is
X = {u1, u2},
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and let the dynamic criteria be
T = {p1}.

Suppose we define the transfer coefficients as follows:

ρ+
T (x) =

{
0.8, if x has p1 valued “high”,

0.4, otherwise,
ρ−

T (x) =
{

0.6, if x has p1 valued “low”,

0.2, otherwise.

Let the threshold constants be d+
T = 0.7 and d−

T = 0.5.

Assume that:

• In X, the object u1 has p1 = “high” so that ρ−
T (u1) = 0.2, and u2 has p1 = “low” so that ρ−

T (u2) = 0.6.

• In U \ X, the objects u3 and u4 have p1 = “high” so that ρ+
T (u3) = ρ+

T (u4) = 0.8.

Then we have:
IT (X) = {u3, u4} since 0.8 ≥ 0.7,

CT (X) = {u2} since 0.6 ≥ 0.5.

Thus, the two-direction dynamic set is computed as

DT (X) = (X ∪ IT (X)) \ CT (X) =
(
{u1, u2} ∪ {u3, u4}

)
\ {u2} = {u1, u3, u4}.

Now, suppose that the attribute set Q = P induces the following partition on U :

[u1]Q = [u3]Q = {u1, u3} and [u2]Q = [u4]Q = {u2, u4}.

Then the dynamic lower approximation is

DT (X) = {x ∈ U : [x]Q ⊆ DT (X)} = {u1, u3},

because for every x ∈ {u1, u3}, the entire equivalence class [x]Q = {u1, u3} is contained in DT (X), while for
x ∈ {u2, u4} the equivalence class {u2, u4} is not fully contained in DT (X) (since u2 /∈ DT (X)).

Similarly, the dynamic upper approximation is

DT (X) = {x ∈ U : [x]Q ∩ DT (X) ̸= ∅} = U,

since every equivalence class (whether {u1, u3} or {u2, u4}) has a non-empty intersection with DT (X).

This example illustrates how the dynamic rough set extends the classical rough set by allowing the expansion
(through IT (X)) and contraction (through CT (X)) of the set X based on dynamic criteria.

1.6|HyperRough Set and SuperHyperRough Set
The HyperRough Set extends rough set theory by incorporating multiple attributes. Its formal definition is given
below [26, 27, 28, 29].

[HyperRough Set] [26, 27] Let X be a nonempty finite universe, and let T1, T2, . . . , Tn be n distinct attributes
with corresponding domains J1, J2, . . . , Jn. Define the Cartesian product

J = J1 × J2 × · · · × Jn.

Let R ⊆ X × X be an equivalence relation on X, with [x]R denoting the equivalence class of x. A HyperRough
Set over X is a pair (F, J), where:

• F : J → P(X) is a mapping that assigns to each attribute value combination a = (a1, a2, . . . , an) ∈ J a
subset F (a) ⊆ X.

• For each a ∈ J , the rough set approximations of F (a) are defined as

F (a) = {x ∈ X | [x]R ⊆ F (a)}, F (a) = {x ∈ X | [x]R ∩ F (a) ̸= ∅}.
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Here, F (a) comprises all elements whose equivalence classes are completely contained within F (a), while F (a)
contains elements whose equivalence classes intersect F (a). Additionally, the following properties hold for all
a ∈ J :

• F (a) ⊆ F (a).

• If F (a) = ∅, then F (a) = F (a) = ∅.

• If F (a) = X, then F (a) = F (a) = X.

[HyperRough Set] Let
X = {u1, u2, u3, u4, u5, u6}

be a nonempty finite universe. Consider two attributes:
T1 : Color with domain J1 = {Red, Blue},

T2 : Size with domain J2 = {Small, Large}.

The Cartesian product of the attribute domains is
J = J1 × J2 = {(Red, Small), (Red, Large), (Blue, Small), (Blue, Large)}.

Define the mapping F : J → P(X) by
F (Red, Small) = {u1, u2},

F (Red, Large) = {u3, u4},

F (Blue, Small) = {u2, u5},

F (Blue, Large) = {u4, u6}.

Assume that an equivalence relation R ⊆ X × X is defined by the partition
[u1]R = {u1, u2}, [u3]R = {u3, u4}, [u5]R = {u5, u6}.

For each a ∈ J the rough set approximations are defined as follows:
F (a) = {x ∈ X | [x]R ⊆ F (a)}, F (a) = {x ∈ X | [x]R ∩ F (a) ̸= ∅}.

Computation for a = (Red, Small):

Since
F (Red, Small) = {u1, u2},

consider the equivalence class for any x ∈ X:

• For x = u1 (or u2), we have [u1]R = {u1, u2} ⊆ {u1, u2}. Thus, u1, u2 ∈ F (Red, Small).

• For any x with x ∈ {u3, u4} or x ∈ {u5, u6}, the entire equivalence class is not a subset of F (Red, Small).

Therefore,
F (Red, Small) = {u1, u2}.

For the upper approximation, note that

• The equivalence class [u1]R = {u1, u2} intersects F (Red, Small) (in fact, it equals F (Red, Small)).

• The classes {u3, u4} and {u5, u6} have no intersection with F (Red, Small).

Thus,
F (Red, Small) = {u1, u2}.

Computation for a = (Blue, Small):

Here,
F (Blue, Small) = {u2, u5}.

Now, consider the equivalence classes:
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• For x in [u1]R = {u1, u2}: Since u2 ∈ F (Blue, Small) but u1 /∈ F (Blue, Small), we have [u1]R ⊈
F (Blue, Small). Thus, {u1, u2} ̸⊆ F (Blue, Small).

• For x in [u5]R = {u5, u6}: u5 ∈ F (Blue, Small) but u6 /∈ F (Blue, Small). Hence, [u5]R ⊈ F (Blue, Small).

Therefore, the lower approximation is empty:
F (Blue, Small) = ∅.

For the upper approximation, include every x ∈ X with [x]R ∩ F (Blue, Small) ̸= ∅:

• The class [u1]R = {u1, u2} intersects F (Blue, Small) (via u2).

• The class [u5]R = {u5, u6} intersects F (Blue, Small) (via u5).

Thus,
F (Blue, Small) = {u1, u2, u5, u6}.

This example concretely demonstrates a HyperRough Set with explicit computation of the lower and upper
approximations for different attribute combinations.

An n-SuperHyperRough Set generalizes rough sets by using power sets of attribute values to produce nuanced
approximations under uncertainty[26, 30, 27]. The definition of n-SuperHyperRough Sets is described as follows.

[n-SuperHyperRough Set] [26, 27] Let X be a nonempty finite universe, and let T1, T2, . . . , Tn be n distinct
attributes with respective domains J1, J2, . . . , Jn. For each attribute Ti, let P(Ji) denote its power set. Define
the set of all possible attribute value combinations as

J = P(J1) × P(J2) × · · · × P(Jn).
Let R ⊆ X × X be an equivalence relation on X. An n-SuperHyperRough Set over X is a pair (F, J), where:

• F : J → P(X) is a mapping that assigns to each attribute value combination A = (A1, A2, . . . , An) ∈ J
(with Ai ⊆ Ji for all i) a subset F (A) ⊆ X.

• For each A ∈ J , the lower and upper approximations are defined as
F (A) = {x ∈ X | [x]R ⊆ F (A)}, F (A) = {x ∈ X | [x]R ∩ F (A) ̸= ∅}.

Thus, F (A) consists of all elements whose equivalence classes are entirely contained in F (A), and F (A) includes
those elements whose equivalence classes intersect F (A). The following properties hold for all A ∈ J :

• F (A) ⊆ F (A).

• If F (A) = ∅, then F (A) = F (A) = ∅.

• If F (A) = X, then F (A) = F (A) = X.

• For any A, B ∈ J ,
F (A ∩ B) ⊆ F (A) ∩ F (B), F (A ∪ B) ⊇ F (A) ∪ F (B).

[n-SuperHyperRough Set] Let
X = {u1, u2, u3, u4}

be a nonempty finite universe. Consider two attributes:
T1 : Shape with domain J1 = {Circle, Square},

T2 : Color with domain J2 = {Red, Blue}.

For each attribute, consider its power set:
P(J1) = {∅, {Circle}, {Square}, {Circle, Square}},

P(J2) = {∅, {Red}, {Blue}, {Red, Blue}}.

The set of all possible attribute value combinations is
J = P(J1) × P(J2).
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Define a mapping F : J → P(X) by specifying values on selected elements of J . For instance, let
F ({Circle}, {Red}) = {u1, u2},

F ({Square}, {Blue}) = {u3},

F ({Circle, Square}, {Red, Blue}) = X,

F (A) = ∅ for all other A ∈ J.

Assume an equivalence relation R ⊆ X × X defined by the partition
[u1]R = {u1, u2}, [u3]R = {u3, u4}.

For any A ∈ J the rough approximations are defined as:

F (A) = {x ∈ X | [x]R ⊆ F (A)}, F (A) = {x ∈ X | [x]R ∩ F (A) ̸= ∅}.

Computation for A = ({Circle}, {Red}):

Since
F ({Circle}, {Red}) = {u1, u2},

we have:

[leftmargin=2em]For x = u1 (or u2), [u1]R = {u1, u2} ⊆ {u1, u2}. Thus, u1, u2 ∈ F ({Circle}, {Red}).
No other equivalence class is completely contained in F ({Circle}, {Red}).

Therefore,
F ({Circle}, {Red}) = {u1, u2}.

For the upper approximation, note:

[leftmargin=2em]The equivalence class [u1]R = {u1, u2} intersects F ({Circle}, {Red}).

Thus,
F ({Circle}, {Red}) = {u1, u2}.

Computation for A = ({Square}, {Blue}):

Here,
F ({Square}, {Blue}) = {u3}.

Now, consider the equivalence class:

[leftmargin=2em]For x = u3 or x = u4, the equivalence class [u3]R = {u3, u4} is not completely contained
in {u3} (since u4 /∈ {u3}). Hence,

F ({Square}, {Blue}) = ∅.

However, since u3 ∈ F ({Square}, {Blue}) and [u3]R intersects F ({Square}, {Blue}),

F ({Square}, {Blue}) = [u3]R = {u3, u4}.

Computation for A = ({Circle, Square}, {Red, Blue}):

Since
F ({Circle, Square}, {Red, Blue}) = X,

we immediately have
F (A) = {x ∈ X | [x]R ⊆ X} = X,

F (A) = {x ∈ X | [x]R ∩ X ̸= ∅} = X.

This example illustrates an n-SuperHyperRough Set where attribute values are chosen from the power sets of the
original domains. The mapping F is defined on J = P(J1) × P(J2) and, together with the equivalence relation
R, yields concrete lower and upper approximations.
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2|Results of This Paper
This section presents the results obtained in this paper.

2.1|Intuitionistic Hyperrough Set
Let X be a nonempty finite universe and let J = J1 × J2 × · · · × Jn be the set of all attribute value combinations
corresponding to the attributes T1, . . . , Tn. Let R be an equivalence relation on X. An Intuitionistic Hyperrough
Set over X is a pair (F, J) where

F : J → I(X)
is a mapping that assigns to each attribute combination a = (a1, a2, . . . , an) ∈ J an intuitionistic set

F (a) =
{

⟨x, µF (a)(x), νF (a)(x)⟩ | x ∈ X
}

with the property that for each a ∈ J we define the intuitionistic lower and upper approximations by:

F (a) =
{

x ∈ X | ∀ y ∈ [x]R, µF (a)(y) = 1 and νF (a)(y) = 0
}

,

F (a) =
{

x ∈ X | [x]R ∩ {y ∈ X | µF (a)(y) > 0} ≠ ∅
}

.

In this way, the pair (
F (a), F (a)

)
serves as the intuitionistic rough approximation of the intuitionistic set F (a). Notice that by construction,

F (a) ⊆ F (a),
and if for each x we have the crisp condition µF (a)(x) ∈ {0, 1} (and hence νF (a)(x) = 1 − µF (a)(x)), the pair of
approximations coincide with the classical rough approximations of F (a).

The following theorem establishes that Intuitionistic Hyperrough Sets generalize both Hyperrough Sets and
Intuitionistic Rough Sets.

[Generalization by Intuitionistic Hyperrough Sets] Let X, J , R, and F be as in Definition . Then:

•••••(i) If, for every a ∈ J , the mapping F (a) is crisp (that is, for every x ∈ X, µF (a)(x) ∈ {0, 1} and
νF (a)(x) = 1 − µF (a)(x)), then the Intuitionistic Hyperrough Set (F, J) coincides with the classical
Hyperrough Set.

(ii) If n = 1 (i.e. J reduces to J1), then (F, J) becomes an Intuitionistic Rough Set.

Proof : (i) Suppose that for every a ∈ J and x ∈ X we have µF (a)(x) ∈ {0, 1} and νF (a)(x) = 1 − µF (a)(x).
Define

F ′(a) = {x ∈ X | µF (a)(x) = 1}.

Then the intuitionistic lower approximation
F (a) = {x ∈ X | ∀ y ∈ [x]R, µF (a)(y) = 1}

is exactly the same as the classical lower approximation
F ′(a) = {x ∈ X | [x]R ⊆ F ′(a)},

and similarly for the upper approximation. Hence, the pair(
F (a), F (a)

)
recovers the classical rough approximations assigned by the Hyperrough Set (F ′, J). Thus, Intuitionistic
Hyperrough Sets generalize Hyperrough Sets.

(ii) If n = 1, then J = J1 and the mapping reduces to
F : J1 → I(X).
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In this case, for each attribute value a ∈ J1, the pair(
F (a), F (a)

)
defines the intuitionistic rough approximations of the intuitionistic set F (a). This exactly matches the standard
definition of an Intuitionistic Rough Set defined on X. Hence, the model reduces appropriately. □

2.2|Intuitionistic Superhyperrough Sets
We define Intuitionistic Superhyperrough Sets as follows.

[Intuitionistic Superhyperrough Set] Let X be a nonempty finite universe and let
J∗ = P(J1) × P(J2) × · · · × P(Jn)

be the Cartesian product of the power sets of the attribute domains Ji. Let R be an equivalence relation on X.
An Intuitionistic Superhyperrough Set over X is a pair (G, J∗) where

G : J∗ → I(X)
is a mapping that assigns to each attribute set combination

A = (A1, A2, . . . , An) ∈ J∗ (Ai ⊆ Ji)
an intuitionistic set

G(A) =
{

⟨x, µG(A)(x), νG(A)(x)⟩ | x ∈ X
}

.

For each A ∈ J∗, define the intuitionistic lower and upper approximations by

G(A) =
{

x ∈ X | ∀ y ∈ [x]R, µG(A)(y) = 1 and νG(A)(y) = 0
}

,

G(A) =
{

x ∈ X | [x]R ∩ {y ∈ X | µG(A)(y) > 0} ≠ ∅
}

.

Thus, the pair (
G(A), G(A)

)
is the intuitionistic rough approximation of the intuitionistic set G(A).

The following theorem shows that Intuitionistic Superhyperrough Sets generalize both SuperHyperrough Sets
and Intuitionistic Hyperrough Sets.

[Generalization by Intuitionistic Superhyperrough Sets] Let X, J∗, R, and G be as in Definition . Then:

(i) If for every A ∈ J∗ the mapping G(A) is crisp (that is, for every x ∈ X, µG(A)(x) ∈ {0, 1} and
νG(A)(x) = 1 − µG(A)(x)), then (G, J∗) coincides with a classical n-SuperHyperrough Set.

(ii) If the mapping G is restricted to the case where each component Ai is a singleton (so that J∗ is effectively
reduced to the Cartesian product J1 × · · · × Jn), then (G, J∗) reduces to an Intuitionistic Hyperrough
Set.

Proof : (i) Assume that for all A ∈ J∗ and for all x ∈ X the membership and nonmembership functions satisfy
µG(A)(x) ∈ {0, 1} and νG(A)(x) = 1 − µG(A)(x). Define

G′(A) = {x ∈ X | µG(A)(x) = 1}.

Then the intuitionistic approximations
G(A) = {x ∈ X | [x]R ⊆ G′(A)} and G(A) = {x ∈ X | [x]R ∩ G′(A) ̸= ∅}

coincide with the lower and upper approximations of a classical SuperHyperrough Set (G′, J∗).

(ii) Now suppose that G is restricted to those A = (A1, A2, . . . , An) ∈ J∗ for which each Ai is a singleton, i.e.,
Ai = {ai} for some ai ∈ Ji. In this case, the set J∗ is isomorphic to the Cartesian product

J = J1 × J2 × · · · × Jn.
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Then the mapping G restricted to this subdomain is exactly a mapping
F : J → I(X),

as in Definition . Therefore, the approximations G(A) and G(A) coincide with those defined by F , and the model
reduces to an Intuitionistic Hyperrough Set. This shows that Intuitionistic Superhyperrough Sets generalize
Intuitionistic Hyperrough Sets. □

2.3|One–directional S–Hyperrough Set
We define One–directional S–Hyperrough Set as follows.

[One–directional S–Hyperrough Set] Let X, R and J be as above. Suppose a mapping
F : J → P(X)

is given. For each a ∈ J , define its one–directional S–extension by
F (a)◦ = F (a) ∪ { u ∈ X \ F (a) | f(u) ∈ F (a) }.

Then, the lower and upper approximations of F (a)◦ are defined as
F ◦(a) = {x ∈ X | [x]R ⊆ F (a)◦},

F ◦(a) = {x ∈ X | [x]R ∩ F (a)◦ ̸= ∅}.

The pair (
F ◦(a), F ◦(a)

)
is the intuitionistic rough approximation of F (a)◦ for each a ∈ J . The collection

{ (F ◦(a), F ◦(a)) : a ∈ J }
is called a One–directional S–Hyperrough Set over X.

[One–directional S–Hyperrough Set] Let
X = {1, 2, 3, 4, 5},

and let the equivalence relation R partition X as follows:
[1]R = {1, 2}, [3]R = {3, 4}, [5]R = {5}.

Suppose the attribute domain is
J = {A, B},

and define the mapping F : J → P(X) by
F (A) = {1, 3, 5} and F (B) = {2, 4}.

Let the element transfer function f : X → X be given by
f(2) = 1, f(4) = 3, and f(x) = x for x ∈ {1, 3, 5}.

Then the one–directional S–extension is defined by
F (a)◦ = F (a) ∪ { u ∈ X \ F (a) | f(u) ∈ F (a) } for a ∈ J.

For a = A:
F (A) = {1, 3, 5}.

The elements not in F (A) are X \ F (A) = {2, 4}. Since
f(2) = 1 ∈ F (A) and f(4) = 3 ∈ F (A),

we have
F (A)◦ = {1, 3, 5} ∪ {2, 4} = X.

For a = B:
F (B) = {2, 4}.

Now, X \ F (B) = {1, 3, 5} and for each u ∈ {1, 3, 5} we find
f(1) = 1 /∈ {2, 4}, f(3) = 3 /∈ {2, 4}, f(5) = 5 /∈ {2, 4}.
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Thus,
F (B)◦ = F (B) = {2, 4}.

Next, we form the rough approximations using the equivalence relation R.

For a = A: Since F (A)◦ = X, every equivalence class is contained in X; hence,
F ◦(A) = {x ∈ X | [x]R ⊆ X} = X,

and
F ◦(A) = {x ∈ X | [x]R ∩ X ̸= ∅} = X.

For a = B: We have F (B)◦ = {2, 4}. Then the lower approximation is
F ◦(B) = {x ∈ X | [x]R ⊆ {2, 4}}.

Notice:
[1]R = {1, 2} ̸⊆ {2, 4}, [3]R = {3, 4} ̸⊆ {2, 4}, [5]R = {5} ̸⊆ {2, 4}.

Thus,
F ◦(B) = ∅.

The upper approximation is
F ◦(B) = {x ∈ X | [x]R ∩ {2, 4} ≠ ∅}.

Here,
[1]R ∩ {2, 4} = {2} ≠ ∅, [3]R ∩ {2, 4} = {4} ≠ ∅, [5]R ∩ {2, 4} = ∅.

So,
F ◦(B) = {1, 2, 3, 4}.

Thus, the One–directional S–Hyperrough Set is given by:
{(F ◦(A), F ◦(A)), (F ◦(B), F ◦(B))} = {(X, X), (∅, {1, 2, 3, 4})}.

[Generalization Property of One–directional S–Hyperrough Sets] Let F : J → P(X) be as in Definition .

(i) If the transfer function f is trivial (i.e., if f(u) = u for all u ∈ X, so that F (a)◦ = F (a) for all a ∈ J),
then the One–directional S–Hyperrough Set

{ (F ◦(a), F ◦(a)) : a ∈ J }
coincides with the classical Hyperrough Set defined by F .

(ii) If n = 1 so that J = J1, then the model reduces to the one–directional S–rough set.

Proof : (i) Assume that f is trivial, that is, f(u) = u for every u ∈ X. Then for any F (a) ⊆ X we have
F (a)◦ = F (a) ∪ {u ∈ X \ F (a) | f(u) ∈ F (a)} = F (a) ∪ {u ∈ X \ F (a) | u ∈ F (a)} = F (a).

Consequently, the approximations become
F ◦(a) = {x ∈ X | [x]R ⊆ F (a)}

and
F ◦(a) = {x ∈ X | [x]R ∩ F (a) ̸= ∅},

which are exactly the classical rough set approximations for F (a). Hence, the One–directional S–Hyperrough Set
reduces to the classical Hyperrough Set.

(ii) If n = 1, then J is simply J1 and the mapping
F : J1 → P(X)

defines for each attribute value a ∈ J1 a subset F (a) ⊆ X. The one–directional S–extension F (a)◦ is then used
to form the lower and upper approximations exactly as in the definition of a one–directional S–rough set. Thus,
the One–directional S–Hyperrough Set (which in this case is indexed by the single attribute domain J1) coincides
with the one–directional S–rough set. □
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2.4|One–directional S–SuperHyperrough Set
We define One–directional S–SuperHyperrough Set as follows.

[One–directional S–Superhyperrough Set] Let X be a nonempty finite universe, and let
J∗ = P(J1) × P(J2) × · · · × P(Jn)

be the Cartesian product of the power sets of the attribute domains. Suppose that a mapping
G : J∗ → P(X)

is given. For each A = (A1, A2, . . . , An) ∈ J∗, define its one–directional S–extension by
G(A)◦ = G(A) ∪ { u ∈ X \ G(A) | f(u) ∈ G(A) }.

Then the lower and upper approximations of G(A)◦ are defined as
G◦(A) = {x ∈ X | [x]R ⊆ G(A)◦},

G◦(A) = {x ∈ X | [x]R ∩ G(A)◦ ̸= ∅}.

The collection
{ (G◦(A), G◦(A)) : A ∈ J∗ }

is called a One–directional S–Superhyperrough Set over X.

[One–directional S–Superhyperrough Set] Let
X = {1, 2, 3, 4},

and let the equivalence relation R partition X as
[1]R = {1, 2} and [3]R = {3, 4}.

Consider a single attribute T1 with domain
J1 = {red, blue}.

Then, the power set is
J∗ = P(J1) = {∅, {red}, {blue}, {red, blue}}.

Define the mapping G : J∗ → P(X) by
G(∅) = ∅, G({red}) = {1, 3}, G({blue}) = {2, 4}, G({red, blue}) = X.

Let the transfer function f : X → X be given by
f(2) = 1, f(4) = 3, f(x) = x for x ∈ {1, 3}.

Then, for each A ∈ J∗ the one–directional S–extension is defined by
G(A)◦ = G(A) ∪ { u ∈ X \ G(A) | f(u) ∈ G(A)}.

We compute each case:

Case 1. A = {red}: G({red}) = {1, 3}. Then,
X \ G({red}) = {2, 4}.

Since f(2) = 1 ∈ {1, 3} and f(4) = 3 ∈ {1, 3}, we obtain
G({red})◦ = {1, 3} ∪ {2, 4} = X.

Thus, the rough approximations are:
G◦({red}) = {x ∈ X | [x]R ⊆ X} = X,

G◦({red}) = X.

Case 2. A = {blue}: G({blue}) = {2, 4}. Then,
X \ G({blue}) = {1, 3}.
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For u ∈ {1, 3}, we have f(1) = 1 /∈ {2, 4} and f(3) = 3 /∈ {2, 4}. Hence,
G({blue})◦ = {2, 4}.

The lower approximation is
G◦({blue}) = {x ∈ X | [x]R ⊆ {2, 4}}.

Since [1]R = {1, 2} ̸⊆ {2, 4} and [3]R = {3, 4} ̸⊆ {2, 4}, it follows that
G◦({blue}) = ∅.

The upper approximation is
G◦({blue}) = {x ∈ X | [x]R ∩ {2, 4} ≠ ∅}.

We have:
[1]R ∩ {2, 4} = {2} ≠ ∅, [3]R ∩ {2, 4} = {4} ≠ ∅.

Thus,
G◦({blue}) = {1, 2, 3, 4} = X.

Case 3. A = {red, blue}: By definition,
G({red, blue}) = X,

so that
G({red, blue})◦ = X.

Thus, both approximations equal X.

Case 4. A = ∅: Here, G(∅) = ∅. Then clearly,
G(∅)◦ = ∅,

and the lower and upper approximations are both empty.

Summarizing, the One–directional S–Superhyperrough Set over X is the collection
{ (G◦(A), G◦(A)) : A ∈ J∗ },

with
A = ∅ : (∅,∅),

A = {red} : (X, X),
A = {blue} : (∅, X),

A = {red, blue} : (X, X).

[Generalization Property of One–directional S–Superhyperrough Sets] Let G : J∗ → P(X) be as in Definition .

(i) If, for every A ∈ J∗, the mapping G(A) is crisp (that is, if for every x ∈ X we have x ∈ G(A) or
x /∈ G(A) so that the one–directional extension is trivial), then the One–directional S–Superhyperrough
Set coincides with the classical Superhyperrough Set.

(ii) If the mapping G is restricted to those A = (A1, . . . , An) ∈ J∗ where every Ai is a singleton (so that
J∗ is isomorphic to J = J1 × · · · × Jn), then the One–directional S–Superhyperrough Set reduces to a
One–directional S–Hyperrough Set.

Proof : (i) Suppose that for every A ∈ J∗ the set G(A) is crisp, i.e., for each x ∈ X there is no uncertainty (the
one–directional S–extension is redundant). Then

G(A)◦ = G(A) ∪ {u ∈ X \ G(A) | f(u) ∈ G(A)} = G(A).
Thus, the approximations become

G◦(A) = {x ∈ X | [x]R ⊆ G(A)}
and

G◦(A) = {x ∈ X | [x]R ∩ G(A) ̸= ∅}.

These are exactly the classical definitions for an n-Superhyperrough Set. Therefore, the One–directional
S–Superhyperrough Set generalizes the classical Superhyperrough Set.
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(ii) Now assume that G is restricted to those A = (A1, . . . , An) ∈ J∗ for which every Ai is a singleton. In this
case, J∗ becomes isomorphic to

J = J1 × J2 × · · · × Jn.

Define the mapping F : J → P(X) by identifying F (a1, . . . , an) = G({a1}, . . . , {an}). Then, by Definition , the
one–directional S–extension of F (a1, . . . , an) is

F (a)◦ = F (a) ∪ {u ∈ X \ F (a) | f(u) ∈ F (a)},

and its approximations are given in the same way as in Definition . Hence, the One–directional S–Superhyperrough
Set reduces precisely to a One–directional S–Hyperrough Set. □

2.5|Tolerance Hyperrough Set
The classical hyperrough set is defined (for an equivalence relation) as the family of all subsets that yield identical
lower and upper approximations. We now extend this idea to the tolerance case.

[Tolerance Hyperrough Set] Let X be a nonempty finite universe, and let

J = J1 × J2 × · · · × Jn

be the Cartesian product of the attribute domains. Let F : J → P(X) be a mapping. For each a ∈ J , define the
tolerance hyperextension of F (a) as

F (a)τ := F (a) (if no further extension is desired),

and consider its tolerance approximations with respect to SIMP,τ :

Fτ (a) := {x ∈ X | SIMP,τ (x) ⊆ F (a)},

F τ (a) := {x ∈ X | SIMP,τ (x) ∩ F (a) ̸= ∅}.

Then, for each a ∈ J , the pair (
Fτ (a), F τ (a)

)
constitutes the tolerance rough approximation of F (a). The collection

{ (Fτ (a), F τ (a)) | a ∈ J }

is called a Tolerance Hyperrough Set over X.

[Generalization of Hyperrough and Tolerance Rough Sets] Let F : J → P(X) be as in Definition . Then:

(i) If the tolerance relation becomes crisp (for example, if τ = 1 so that SIMP,1 is equivalent to equality),
then the approximations Fτ (a) and F τ (a) coincide with the classical rough approximations, and the
Tolerance Hyperrough Set reduces to the classical Hyperrough Set.

(ii) If the number of attributes is n = 1 (so that J ∼= J1), then the mapping F : J → P(X) yields, for each
a ∈ J ,

(Fτ (a), F τ (a))
which is exactly the tolerance rough approximation of F (a). Hence the Tolerance Hyperrough Set
reduces to a Tolerance Rough Set.

Proof : (i) If τ = 1 then for any x, y ∈ X we have SIMP,1(x, y) = 1 if and only if a(x) = a(y) for all a ∈ P . In
this case, the tolerance relation SIMP,1 is the classical indiscernibility (equivalence) relation and thus

Fτ (a) = {x ∈ X | [x]R ⊆ F (a)}

and
F τ (a) = {x ∈ X | [x]R ∩ F (a) ̸= ∅},

which coincide with the classical hyperrough approximations. Therefore, the Tolerance Hyperrough Set generalizes
the classical Hyperrough Set.
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(ii) If n = 1 then J = J1 and the mapping F : J1 → P(X) assigns to every single attribute value a subset
F (a) ⊆ X. The tolerance approximations defined by

Fτ (a) = {x ∈ X | SIMP,τ (x) ⊆ F (a)}
and

F τ (a) = {x ∈ X | SIMP,τ (x) ∩ F (a) ̸= ∅}
are exactly those given by the standard tolerance rough set model. Hence, the Tolerance Hyperrough Set reduces
to a Tolerance Rough Set. □

[Tolerance Hyperrough Set] Let
X = {1, 2, 3, 4, 5}.

Consider two condition attributes with domains
J1 = {Red, Blue} and J2 = {High, Low}.

Then, the Cartesian product is
J = J1 × J2 = {(Red, High), (Red, Low), (Blue, High), (Blue, Low)}.

Define the mapping F : J → P(X) by
F (Red, High) = {1, 2, 3}, F (Red, Low) = {3, 4, 5},

and for simplicity we let
F (Blue, High) = {1, 2, 3}, F (Blue, Low) = {3, 4, 5}.

Assume a tolerance relation on X specified as follows. For each x ∈ X, define

SIM(x) =



{1, 2} if x = 1,

{1, 2, 3} if x = 2,

{2, 3, 4} if x = 3,

{3, 4, 5} if x = 4,

{4, 5} if x = 5.

Then, for any subset S ⊆ X,
Pτ S = {x ∈ X | SIM(x) ⊆ S} and P τ S = {x ∈ X | SIM(x) ∩ S ̸= ∅}.

Case: Consider the attribute combination (Red, High). Then
F (Red, High) = {1, 2, 3}.

Lower approximation:

• For x = 1: SIM(1) = {1, 2} ⊆ {1, 2, 3} so 1 ∈ Pτ F (Red, High).

• For x = 2: SIM(2) = {1, 2, 3} ⊆ {1, 2, 3} so 2 ∈ Pτ F (Red, High).

• For x = 3: SIM(3) = {2, 3, 4} but 4 /∈ {1, 2, 3}; hence 3 /∈ Pτ F (Red, High).

• x = 4 and x = 5 are not in F (Red, High) so we do not include them.

Thus,
Pτ F (Red, High) = {1, 2}.

Upper approximation:

• For x = 1: SIM(1) = {1, 2} intersects {1, 2, 3} (in fact, {1, 2} ≠ ∅); so 1 ∈ P τ F (Red, High).

• For x = 2: SIM(2) = {1, 2, 3} clearly intersects {1, 2, 3}; so 2 ∈ P τ F (Red, High).

• For x = 3: SIM(3) = {2, 3, 4} intersects {1, 2, 3} (since 2, 3 ∈ {1, 2, 3}); so 3 ∈ P τ F (Red, High).

• For x = 4: SIM(4) = {3, 4, 5} intersects {1, 2, 3} (since 3 ∈ {1, 2, 3}); so 4 ∈ P τ F (Red, High).

• For x = 5: SIM(5) = {4, 5} does not intersect {1, 2, 3}; so 5 /∈ P τ F (Red, High).
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Thus,
P τ F (Red, High) = {1, 2, 3, 4}.

Therefore, the Tolerance Hyperrough Set corresponding to the attribute combination (Red, High) is the pair(
Pτ F (Red, High), P τ F (Red, High)

)
= ({1, 2}, {1, 2, 3, 4}).

2.6|Tolerance Superhyperrough Sets
Classically, a superhyperrough set is defined as the collection of maximal elements (with respect to set inclusion)
of a hyperrough set. We generalize this notion as follows.

[Tolerance Superhyperrough Set] Let X be a nonempty finite universe, and let

J∗ = P(J1) × P(J2) × · · · × P(Jn)

be the Cartesian product of the power sets of the attribute domains. Let G : J∗ → P(X) be a mapping. For
each A = (A1, . . . , An) ∈ J∗, define the tolerance approximations by

Gτ (A) := {x ∈ X | SIMP,τ (x) ⊆ G(A)},

Gτ (A) := {x ∈ X | SIMP,τ (x) ∩ G(A) ̸= ∅}.

Then the pair (
Gτ (A), Gτ (A)

)
represents the tolerance rough approximation of G(A). The family

{ (Gτ (A), Gτ (A)) | A ∈ J∗ }

is called a Tolerance Superhyperrough Set over X.

[Generalization of Superhyperrough and Tolerance Hyperrough Sets] Let G : J∗ → P(X) be as in Definition .
Then:

(i) If for every A ∈ J∗ the mapping G(A) is crisp (that is, the tolerance approximations yield no uncertainty),
then the tolerance approximations Gτ (A) and Gτ (A) coincide with the classical rough approximations.
In this case, the Tolerance Superhyperrough Set is equivalent to the classical Superhyperrough Set.

(ii) If G is restricted to those elements A = (A1, . . . , An) ∈ J∗ where each Ai is a singleton (so that J∗ is
isomorphic to J = J1 × · · · × Jn), then the tolerance approximations reduce to those given in Definition ;
that is, the Tolerance Superhyperrough Set reduces to a Tolerance Hyperrough Set.

Proof : (i) If G(A) is crisp for every A ∈ J∗ then for every x ∈ X we have that x ∈ G(A) or x /∈ G(A). In this
situation, the tolerance approximations simplify to

Gτ (A) = {x ∈ X | [x]SIMP,1 ⊆ G(A)},

and
Gτ (A) = {x ∈ X | [x]SIMP,1 ∩ G(A) ̸= ∅},

which are exactly those of the classical n-Superhyperrough Set. (In essence, when there is no additional
uncertainty induced by the tolerance relation, the model is classical.)

(ii) Suppose now that G is restricted to those A = (A1, . . . , An) ∈ J∗ in which every Ai is a singleton. Then J∗

is naturally isomorphic to
J = J1 × J2 × · · · × Jn.

Define a mapping F : J → P(X) by

F (a1, . . . , an) = G({a1}, . . . , {an}).

Then for every a ∈ J the tolerance approximations for F (a) are precisely those defined in Definition . Thus,
under this restriction, the Tolerance Superhyperrough Set reduces to a Tolerance Hyperrough Set. □
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[Tolerance Superhyperrough Set] Let
X = {1, 2, 3, 4}.

Consider a single attribute T1 with domain

J1 = {red, blue}.

Then, the power set of the domain is

P(J1) = {∅, {red}, {blue}, {red, blue}}.

Define a mapping G : P(J1) → P(X) by

G(∅) = ∅, G({red}) = {1, 3}, G({blue}) = {2, 4}, G({red, blue}) = X.

Assume a tolerance relation on X given by:

SIM(1) = {1, 2}, SIM(2) = {1, 2, 3}, SIM(3) = {2, 3, 4}, SIM(4) = {3, 4}.

Then for any S ⊆ X,

Pτ S = {x ∈ X | SIM(x) ⊆ S} and P τ S = {x ∈ X | SIM(x) ∩ S ̸= ∅}.

We now compute the tolerance approximations for several cases.

Case 1. A = ∅. Then, G(∅) = ∅. Hence,

Pτ G(∅) = ∅ and P τ G(∅) = ∅.

Case 2. A = {red}. Then, G({red}) = {1, 3}.

Lower approximation:
Check each x ∈ X:

• For x = 1: SIM(1) = {1, 2}. Since {1, 2} ̸⊆ {1, 3} (because 2 /∈ {1, 3}), 1 /∈ Pτ G({red}).

• For x = 2: SIM(2) = {1, 2, 3} is not a subset of {1, 3} (as 2 /∈ {1, 3}).

• For x = 3: SIM(3) = {2, 3, 4} is not contained in {1, 3} (since 2 and 4 are missing).

• For x = 4: SIM(4) = {3, 4} is not contained in {1, 3} (since 4 /∈ {1, 3}).

Thus,
Pτ G({red}) = ∅.

Upper approximation:

• x = 1: SIM(1) = {1, 2} and {1, 2} ∩ {1, 3} = {1} ≠ ∅; so 1 ∈ P τ G({red}).

• x = 2: SIM(2) = {1, 2, 3} intersects {1, 3} (since both 1 and 3 are in the intersection); so 2 ∈ P τ G({red}).

• x = 3: SIM(3) = {2, 3, 4} intersects {1, 3} (via element 3); so 3 ∈ P τ G({red}).

• x = 4: SIM(4) = {3, 4} intersects {1, 3} (since 3 ∈ {1, 3}); so 4 ∈ P τ G({red}).

Thus,
P τ G({red}) = {1, 2, 3, 4}.

Case 3. A = {red, blue}. Then, G({red, blue}) = X = {1, 2, 3, 4}. Hence, both approximations are

Pτ G({red, blue}) = X and P τ G({red, blue}) = X.
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Thus, the Tolerance Superhyperrough Set is the collection of pairs:
A = ∅ : (∅,∅),

A = {red} : (∅, {1, 2, 3, 4}),
A = {blue} : (∅, {1, 2, 3, 4}),

A = {red, blue} : (X, X).

2.7|Dynamic Hyperrough Set
We define Dynamic Hyperrough Set as follows.

[Dynamic Hyperrough Set] Let T1, T2, . . . , Tn be n distinct attributes with corresponding domains J1, J2, . . . , Jn.
Define the Cartesian product

J = J1 × J2 × · · · × Jn.

Assume there is a mapping
F : J → P(X)

that assigns to each attribute combination a = (a1, . . . , an) ∈ J a subset F (a) ⊆ X. In order to capture dynamic
effects, assume that for every a ∈ J there exist two transfer functions

ρ+
a : X → [0, 1] and ρ−

a : X → [0, 1],
together with fixed thresholds d+

a , d−
a ∈ [0, 1]. Then for each a ∈ J define the inward (addition) set and the

outward (removal) set by
I(a) = {x ∈ X \ F (a) : ρ+

a (x) ≥ d+
a },

C(a) = {x ∈ F (a) : ρ−
a (x) ≥ d−

a }.

The dynamic modified set associated with a is
D(a) =

(
F (a) ∪ I(a)

)
\ C(a).

The pair (D, J), where D : J → P(X) is given by a 7→ D(a), is called a dynamic Hyperrough Set. Its dynamic
approximations are given by

D(a) = {x ∈ X : [x]R ⊆ D(a)} and D(a) = {x ∈ X : [x]R ∩ D(a) ̸= ∅}.

[Dynamic Hyperrough Set] Let
X = {u1, u2, u3, u4, u5}

be a finite universe. Consider two attributes:
T1 : Color with domain J1 = {Red, Blue},

T2 : Shape with domain J2 = {Circle, Square}.

Then the attribute combination domain is
J = J1 × J2.

Define the mapping
F : J → P(X)

by setting, for instance,
F (Red, Circle) = {u1, u2}, F (Red, Square) = {u3},

F (Blue, Circle) = {u2, u4}, F (Blue, Square) = {u5}.

To incorporate dynamic effects, for each attribute combination a ∈ J we introduce two transfer functions:
ρ+

a : X → [0, 1] (inward transfer),
ρ−

a : X → [0, 1] (outward transfer).
For the combination a = (Red, Circle), suppose that the dynamic transfer values are assigned as follows:

ρ+
(Red,Circle)(x) =

{
0.8, if x ∈ {u3, u4},

0.5, otherwise,
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ρ−
(Red,Circle)(x) =

{
0.6, if x ∈ {u2},

0.3, otherwise.

Let the thresholds be
d+

(Red,Circle) = 0.7 and d−
(Red,Circle) = 0.5.

Then we define the inward (addition) set and the outward (removal) set for a = (Red, Circle) by

I(a) = {x ∈ X \ F (a) : ρ+
a (x) ≥ d+

a } = {u3, u4},

C(a) = {x ∈ F (a) : ρ−
a (x) ≥ d−

a } = {u2}.

Hence, the dynamic modified set is computed as

D(a) =
(
F (a) ∪ I(a)

)
\ C(a) =

(
{u1, u2} ∪ {u3, u4}

)
\ {u2} = {u1, u3, u4}.

Now, assume that an equivalence relation R ⊆ X × X is given by partitioning

X into [u1]R = {u1, u3, u4} and [u2]R = {u2, u5}.

Then the dynamic lower and upper approximations for the combination (Red, Circle) are

D(a) = {x ∈ X : [x]R ⊆ D(a)} = {u1, u3, u4},

D(a) = {x ∈ X : [x]R ∩ D(a) ̸= ∅} = X.

Thus, this example concretely illustrates the computation of a Dynamic Hyperrough Set.

[Dynamic Hyperrough Set Generalizes Hyperrough Set and Dynamic Rough Set] The dynamic Hyperrough Set
(D, J) defined in Definition generalizes:

(1) The classical Hyperrough Set: If for every a ∈ J and for every x ∈ X the dynamic conditions are vacuous,
i.e.

ρ+
a (x) < d+

a and ρ−
a (x) < d−

a ,

then I(a) = ∅ and C(a) = ∅, so that D(a) = F (a).

(2) The dynamic Rough Set: In the special case when n = 1 (so that J = J1), the definition reduces to that
of the dynamic Rough Set.

Proof : (1) Recovery of the Classical Hyperrough Set: Assume that for all a ∈ J and every x ∈ X, the
inequalities

ρ+
a (x) < d+

a and ρ−
a (x) < d−

a

hold. Then by definition,
I(a) = {x ∈ X \ F (a) : ρ+

a (x) ≥ d+
a } = ∅,

and
C(a) = {x ∈ F (a) : ρ−

a (x) ≥ d−
a } = ∅.

Thus,
D(a) = (F (a) ∪ ∅) \ ∅ = F (a),

for every a ∈ J . Hence, the dynamic construction yields exactly the classical Hyperrough Set.

(2) Recovery of the Dynamic Rough Set: When n = 1, the Cartesian product reduces to J = J1 and
the mapping F : J1 → P(X) assigns subsets of X based on a single attribute value. In this case, the dynamic
procedure of forming

D(a) =
(
F (a) ∪ I(a)

)
\ C(a)

is exactly that adopted in the dynamic Rough Set framework. Therefore, the dynamic Hyperrough Set generalizes
the dynamic Rough Set when there is only one attribute. □
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2.8|Dynamic SuperHyperrough Set
We define Dynamic SuperHyperrough Set as follows.

[Dynamic SuperHyperrough Set] Let T1, T2, . . . , Tn be n distinct attributes with corresponding domains
J1, J2, . . . , Jn. For each attribute Ti, let P(Ji) denote its power set. Define

J = P(J1) × P(J2) × · · · × P(Jn).
Assume there is a mapping

F : J → P(X)
assigning to each combination

A = (A1, A2, . . . , An) with Ai ⊆ Ji,

a subset F (A) ⊆ X. In order to incorporate dynamics, suppose that for every A ∈ J there exist dynamic transfer
functions

ρ+
A : X → [0, 1] and ρ−

A : X → [0, 1],
with thresholds d+

A, d−
A ∈ [0, 1]. Then define

I(A) = {x ∈ X \ F (A) : ρ+
A(x) ≥ d+

A}, C(A) = {x ∈ F (A) : ρ−
A(x) ≥ d−

A}.

The dynamic modified set for A is given by

D(A) =
(

F (A) ∪ I(A)
)

\ C(A).

Thus, the pair (D, J) with D : J → P(X) defined by A 7→ D(A) is called an Dynamic SuperHyperrough Set. Its
lower and upper approximations are defined as

D(A) = {x ∈ X : [x]R ⊆ D(A)}, D(A) = {x ∈ X : [x]R ∩ D(A) ̸= ∅}.

[Dynamic SuperHyperrough Set] Let
X = {u1, u2, u3, u4}

be a finite universe. Consider two attributes:
T1 : Type with domain J1 = {A, B},

T2 : Category with domain J2 = {X, Y }.

For each attribute, we consider its power set. Hence, define
P(J1) = {∅, {A}, {B}, {A, B}}, P(J2) = {∅, {X}, {Y }, {X, Y }}.

Then, the attribute combination domain is given by
J = P(J1) × P(J2).

Define a mapping
F : J → P(X)

as follows:
F ({A}, {X}) = {u1, u2}, F ({B}, {X}) = {u3},

F ({A}, {Y }) = {u2, u4}, F ({A, B}, {X, Y }) = X,

and for all other combinations, let
F (A) = ∅.

To introduce dynamic modifications, assign for each combination A ∈ J appropriate transfer functions. For
instance, for the combination

A = ({A}, {X}),
assume that

ρ+
A(x) =

{
0.9, if x ∈ {u3, u4},

0.4, otherwise,
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and

ρ−
A(x) =

{
0.7, if x ∈ {u2},

0.3, otherwise.

Choose thresholds
d+

A = 0.8 and d−
A = 0.6.

Then, for A = ({A}, {X}), we compute:
I(A) = {x ∈ X \ F (A) : ρ+

A(x) ≥ d+
A} = {u3, u4},

C(A) = {x ∈ F (A) : ρ−
A(x) ≥ d−

A} = {u2}.

Thus, the dynamic modified set for A is
D(A) =

(
F (A) ∪ I(A)

)
\ C(A) =

(
{u1, u2} ∪ {u3, u4}

)
\ {u2} = {u1, u3, u4}.

Suppose now that the equivalence relation R on X partitions the universe as
[u1]R = {u1, u3} and [u2]R = {u2, u4}.

Then the dynamic approximations for A = ({A}, {X}) are given by
D(A) = {x ∈ X : [x]R ⊆ D(A)} = {u1, u3},

D(A) = {x ∈ X : [x]R ∩ D(A) ̸= ∅} = X.

This example concretely demonstrates the computation within a Dynamic SuperHyperrough Set, where the
domain of attribute combinations is expanded to include subsets of the original attribute domains.

[Dynamic SuperHyperrough Set Generalizes SuperHyperrough Set and Dynamic Hyperrough Set] The dynamic
SuperHyperrough Set (D, J) defined in Definition generalizes:

(1) The classical SuperHyperrough Set: If for every A ∈ J and every x ∈ X,
ρ+

A(x) < d+
A and ρ−

A(x) < d−
A,

then I(A) = ∅ and C(A) = ∅, so that D(A) = F (A).

(2) The dynamic Hyperrough Set: If we restrict J to the subset
J ′ = {({a1}, {a2}, . . . , {an}) : ai ∈ Ji},

then the mapping F on J ′ and the corresponding dynamic modification coincide with the ones in
Definition ; hence, the dynamic SuperHyperrough Set reduces to the dynamic Hyperrough Set.

Proof : (1) Recovery of the Classical SuperHyperrough Set: Assume that for all A ∈ J and every x ∈ X
the conditions

ρ+
A(x) < d+

A and ρ−
A(x) < d−

A

are satisfied. Then, by definition,
I(A) = ∅ and C(A) = ∅.

Thus,
D(A) =

(
F (A) ∪ ∅

)
\ ∅ = F (A).

It follows that the dynamic modification disappears, and the structure coincides with that of a classical
SuperHyperrough Set.

(2) Reduction to the Dynamic Hyperrough Set: Now, consider the subset
J ′ = {({a1}, {a2}, . . . , {an}) : ai ∈ Ji} ⊆ J.

Define the mapping F ′ on J ′ by
F ′(({a1}, {a2}, . . . , {an})

)
:= F (a1, a2, . . . , an).

For each element of J ′, the dynamic transfer functions and thresholds (restricted to singleton sets) are taken to be
identical to those used in the dynamic Hyperrough Set (Definition ). Hence, for every A = ({a1}, . . . , {an}) ∈ J ′

one obtains
D(A) =

(
F ′(A) ∪ I(A)

)
\ C(A)
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which is exactly the same as in the dynamic Hyperrough Set definition. Therefore, under the restriction to
singleton components, the dynamic SuperHyperrough Set reduces to the dynamic Hyperrough Set. □

3|Conclusion and Future Tasks
In this paper, we introduced newly defined concepts of the Intuitionistic Hyperrough Set, One–Directional
S–Hyperrough Set, Tolerance Hyperrough Set, and Dynamic Hyperrough Set. In future work, we aim to explore
extensions of these frameworks to Graphs [31], Hypergraphs [32, 33], and SuperHypergraphs [34, 35].

Funding
This study did not receive any financial or external support from organizations or individuals.

Acknowledgments
We extend our sincere gratitude to everyone who provided insights, inspiration, and assistance throughout this
research. We particularly thank our readers for their interest and acknowledge the authors of the cited works
for laying the foundation that made our study possible. We also appreciate the support from individuals and
institutions that provided the resources and infrastructure needed to produce and share this paper. Finally, we
are grateful to all those who supported us in various ways during this project.

Ethical Approval
As this research is entirely theoretical in nature and does not involve human participants or animal subjects, no
ethical approval is required.

Data Availability
This research is purely theoretical, involving no data collection or analysis. We encourage future researchers to
pursue empirical investigations to further develop and validate the concepts introduced here.

Research Integrity

The authors hereby confirm that, to the best of their knowledge, this manuscript is their original work, has not
been published in any other journal, and is not currently under consideration for publication elsewhere at this
stage.

Disclaimer (Note on Computational Tools)
No computer-assisted proof, symbolic computation, or automated theorem proving tools (e.g., Mathematica,
SageMath, Coq, etc.) were used in the development or verification of the results presented in this paper. All
proofs and derivations were carried out manually and analytically by the authors.

Disclaimer (Limitations and Claims)
The theoretical concepts presented in this paper have not yet been subject to practical implementation or
empirical validation. Future researchers are invited to explore these ideas in applied or experimental settings.
Although every effort has been made to ensure the accuracy of the content and the proper citation of sources,
unintentional errors or omissions may persist. Readers should independently verify any referenced materials.

181                                   )Xjita | Soft. Comput. Fusion. Appl. 2(3) (2025) 157-183



To the best of the authors’ knowledge, all mathematical statements and proofs contained herein are correct and
have been thoroughly vetted. Should you identify any potential errors or ambiguities, please feel free to contact
the authors for clarification.

The results presented are valid only under the specific assumptions and conditions detailed in the manuscript.
Extending these findings to broader mathematical structures may require additional research. The opinions
and conclusions expressed in this work are those of the authors alone and do not necessarily reflect the official
positions of their affiliated institutions.

Competing interests
Author has declared that no competing interests exist.

Consent to Publish declaration
The author approved to Publish declarations.

References
 [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.  https://doi.org/10.1016/S0019-9958(65)90241-X
 [2] Atanassov, K., & Gargov, G. (1998). Elements of intuitionistic fuzzy logic. Part I. Fuzzy sets and  systems, 95(1), 39-52.
https://doi.org/10.1016/S0165-0114(96)00326-0 

 [3] Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set, and logic: Analytic  synthesis & synthetic analysis.
https://philpapers.org/rec/Smannp
 [4] Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-  141). American Research

Press. http://dx.doi.org/10.5281/zenodo.49174 

 [5] Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with  applications, 37(4-5), 19-31.
https://doi.org/10.1016/S0898-1221(99)00056-5 

 [6] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with  applications, 45(4-5), 555-

562. https://doi.org/10.1016/S0898-1221(03)00016-6 

 [7] Pawlak, Z. (1982). Rough sets. International journal of computer and information  sciences, 11, 341–356.
https://doi.org/10.1007/BF01001956 

 [8] Broumi, S., Smarandache, F., & Dhar, M. (2014). Rough neutrosophic sets. Infinite Study, 32,   493-502.
http://dx.doi.org/10.5281/zenodo.30310 

 [9] Pawlak, Z., Wong, S. K. M., & Ziarko, W. (1988). Rough sets: Probabilistic versus deterministic  approach. International

Journal of Man-Machine Studies, 29(1), 81-95.  https://doi.org/10.1016/S0020-7373(88)80032-4 

 [10] Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. Springer.  https://doi.org/10.1007/3-
540-44761-X
 [11] Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics &  Systems, 29(7), 661-688.
https://doi.org/10.1080/019697298125470 

 [12] Beaubouef, T., & Petry, F. E. (2007). Intuitionistic rough sets for database applications.  In Transactions on Rough Sets

VI: Commemorating the Life and Work of Zdzisław Pawlak, Part  I (pp. 26-30). Berlin, Heidelberg: Springer Berlin Heidel-

berg. https://doi.org/10.1007/978-3-540-  71200-8_2 

 [13] Beaubouef, T., & Petry, F. (2013). Information systems uncertainty design and  implementation combining: Rough,

fuzzy, and intuitionistic approaches. In Flexible approaches in  data, information and knowledge management (pp. 143-164).

Cham: Springer International  Publishing. https://doi.org/10.1007/978-3-319-00954-4_7 

 [14] Beaubouef, T., & Petry, F. E. (2009). Uncertainty modeling for database design using  intuitionistic and rough set the-

ory. Journal of Intelligent & Fuzzy Systems, 20(3), 105-117.  https://doi.org/10.3233/IFS-2009-0422 

Note for intuitionistic HyperRough set, one–directional... 182



[15] Zou, W., Chen, P., & Huang, J. (2011). Digital image information disguising technology  research based on S-rough sets. 2011

3rd international conference on computer research and  development (pp. 183-187). IEEE.
https://doi.org/10.1109/ICCRD.2011.5763999 

[16] Dongya, L., Xuefang, R., & Kaiquan, S. (2009). Rough law generation and its separation- recognition. Journal of systems en-

gineering and electronics, 20(6), 1239-1246.  https://ieeexplore.ieee.org/abstract/document/6074575 

[17] Jinming, Q., & Li, Z. (2009). F-interference law generation and its feature  recognition. Journal of systems engineering and

electronics, 20(4), 777-783.  https://ieeexplore.ieee.org/document/6074502 

[18] Xiumei, H., Haiyan, F., & Kaiquan, S. (2008). S-rough sets and the discovery of F-hiding  knowledge. Journal of systems en-

gineering and electronics, 19(6), 1171-1177.  https://doi.org/10.1016/S1004-4132(08)60215-7 

[19] Hu, Y. C. (2015). Flow-based tolerance rough sets for pattern classification. Applied soft  computing, 27, 322-331.
https://doi.org/10.1016/j.asoc.2014.11.021 

[20] Stepaniuk, J., & Kretowski, M. (1995). Decision system based on tolerance rough sets.  Proceedings of the Fourth Interna-

tional Workshop on Intelligent Information Systems (pp. 62-  73). Augustow, Poland. https://B2n.ir/eh4291 

[21] Hu, Y. C. (2016). Tolerance rough sets for pattern classification using multiple grey single- layer perceptrons.

Neurocomputing, 179, 144-151.  https://doi.org/10.1016/j.neucom.2015.11.066 

[22] Mac Parthalain, N., & Shen, Q. (2009). Exploring the boundary region of tolerance rough  sets for feature selection. Pattern

recognition, 42(5), 655-667.  https://doi.org/10.1016/j.patcog.2008.08.029 

[23] Li, D. Y., & Hu, B. Q. (2007, August). A kind of dynamic rough sets. Fourth International  Conference on Fuzzy Systems

and Knowledge Discovery (FSKD 2007) (pp. 79-85). IEEE.  https://doi.org/10.1109/FSKD.2007.51 

[24] Moudani, W., Shahin, A., Chakik, F., & Mora-Camino, F. (2011). Dynamic rough sets features  reduction. International jour-

nal of computer science and information security, 9(4), 1.  https://enac.hal.science/hal-01021589/ 

[25] Longshaw, T., & Haines, S. (1995). Dynamic rough sets. Proceedings of 3rd International  symposium on uncertainty model-

ing and analysis and annual conference of the north american  fuzzy information processing society (pp. 292-295). IEEE.
https://doi.org/10.1109/ISUMA.1995.527709 

[26] Fujita, T. (2025). Short introduction to rough, hyperrough, superhyperrough, treerough. In  Advancing uncertain

combinatorics through graphization, hyperization, and uncertainization:  Fuzzy, neutrosophic, soft, rough, and beyond: Fifth vol-

ume: Various super-hyperconcepts   (Collected papers) (pp. 394). Infinite Study  .  https://www.researchgate.net/publica-
tion/388754283 

[27] Fujita, T., & Smarandache, F. (2025). A concise introduction to hyperfuzzy,  hyperneutrosophic, hyperplithogenic, hypersoft,

and hyperrough sets with practical  examples. Neutrosophic sets and systems, 80, 609-631.
https://doi.org/10.5281/zenodo.14759385 

[28] Fujita, T. (2024). Hyperrough cubic set and superhyperrough cubic set. Prospects for applied  mathematics and data analysis,

4(1), 28-35. http://dx.doi.org/10.54216/PAMDA.040103 

[29] Fujita, T.(2025). Advancing uncertain combinatorics through graphization, hyperization, and  uncertainization: Fuzzy,

neutrosophic, soft, rough, and beyond. Biblio Publishing.  https://www.researchgate.net/publication/386082978 

[30] Fujita, T. (2025). Neighborhood hyperrough set and neighborhood superhyperrough  set. Pure mathematics for theoretical

computer science, 5(1), 34-47.  http://dx.doi.org/10.54216/PMTCS.050104 

[31] Diestel, R. (2025). Graph theory. Springer Nature. https://doi.org/10.1007/978-3-662-  70107-2 

[32] Fujita, T., & Singh, P. K. (2025). Hyperfuzzy graph and hyperfuzzy hypergraph. Journal of  neutrosophic and fuzzy systems

(JNFS), 10(01), 01-13. http://dx.doi.org/10.54216/JNFS.100101 

[33] Bretto, A. (2013). Hypergraph theory. An introduction. Cham: Springer.  https://doi.org/10.1007/978-3-319-00080-0 

[34] Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic  n-superhypergraph, and extension

of hyperalgebra to n-ary (Classical-/Neutro-/Anti-)  HyperAlgebra. Infinite Study. https://www.researchgate.net/publica-
tion/343862930 

[35] Smarandache, F. (2022). Introduction to the n-SuperHyperGraph-the most general form of  graph today. Infinite Study.
http://dx.doi.org/10.5281/zenodo.3783103 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publica-
tions are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s).
This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions or products referred to in the content.

183                                   )Xjita | Soft. Comput. Fusion. Appl. 2(3) (2025) 157-183


	1|Preliminaries and Definitions 
	1.1|Rough Set
	1.2|Intuitionistic Rough Sets
	1.3|One-directional S-rough Sets
	1.4|Tolerance Rough Sets
	1.5|Dynamic Rough Set
	1.6|HyperRough Set and SuperHyperRough Set
	2|Results of This Paper
	2.1|Intuitionistic Hyperrough Set
	2.2|Intuitionistic Superhyperrough Sets
	2.3|One–directional S–Hyperrough Set
	2.4|One–directional S–SuperHyperrough Set
	2.5|Tolerance Hyperrough Set
	2.6|Tolerance Superhyperrough Sets
	2.7|Dynamic Hyperrough Set
	2.8|Dynamic SuperHyperrough Set
	3|Conclusion and Future Tasks
	Funding
	Acknowledgments
	Ethical Approval
	Data Availability
	Research Integrity
	Disclaimer (Note on Computational Tools)
	Disclaimer (Limitations and Claims)
	Competing interests
	Consent to Publish declaration
	References

