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1|Introduction    

Advances in Artificial Intelligence (AI), especially machine learning, are propelling a major change in the field 

of robotics. Mostly grounded in classical control theory, conventional robot control often depends on exact 

models and controlled surroundings (Such as the convergence of AI), and robotics has produced a new era 

of autonomous systems capable of performing complex tasks in dynamic and unexpected environments [1].  

Although significant innovations have been made, several unsolved mathematical problems restrict the 

application of AI-driven robots in safety-sensitive and real-world scenarios, as in Fig. 1 [1]. 
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Abstract 

The convergence of Artificial Intelligence (AI) and robotics has brought about a fresh period of autonomous systems 

able to execute sophisticated jobs in changing and unpredictable settings. Although significant advancements have 

been achieved, a multitude of unresolved mathematical issues limit the use of AI-driven robots in safety-critical and 

real-world uses. Focusing on robustness, safety, learning, Human-Robot Interaction (HRI), and complicated system 

management, this study investigates several significant unresolved concerns at the crossroads of AI, control theory, 

and mathematics. Creating intelligent, dependable, and trustworthy autonomous robots depends on addressing these 

obstacles. Several influential open problems are introduced within the folds of this paper, with final thoughts on 

mathematizing AI-driven robot control. 
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Fig. 1. An ongoing casting procedure. 
 

Emphasizing robustness, safety, learning, Human-Robot Interaction (HRI), and sophisticated system 

management, this research explores multiple critical unanswered questions at the intersection of AI, control 

theory, and mathematics [1]. Building very intelligent, reliable, and trustworthy autonomous robots depends 

on overcoming these challenges [2]. But actual situations are naturally complicated, unpredictable, and 

dynamic, requiring more clever and flexible control systems. With its capacity to learn from data [1], detect 

sophisticated patterns, and make decisions under ambiguity, AI provides a great toolbox for tackling these 

problems. 

Broad range of approaches including Reinforcement Learning (RL) [3], [4], deep learning for perception and 

decision-making [5], imitation learning, and various forms of adaptive control define AI-driven robot control. 

From negotiating unsorted surfaces to executing complex manipulating tasks [6], these approaches have 

allowed robots to accomplish amazing tasks.  

Still, the change from managed laboratory environments to large-scale actual application exposes basic 

theoretical and mathematical deficiencies [6]. This document seeks to outline some of these important 

unresolved issues, therefore emphasizing places where strict mathematical structures are required to guarantee 

the robustness [6], safety, and generalizability of AI-driven robotic systems. 

2|Safety Guarantees and Robustness 

For AI-driven robots, particularly in safety-critical settings (e.g., autonomous driving, surgical robots), the 

absence of official assurances about their reliability and safety is one of their most important issues, as 

depicted in Fig.2 [7]. 

Fig. 2. Artificial Intelligence-driven Internet of Things (AIIoT) in robotics applications. 
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  2.1|Official Verification of Neural Network Controllers 

Deep Neural Networks (DNNs), used for perception, policy learning, or state estimation, abound in many 

contemporary AI-driven robot control systems. Being very opaque “black boxes,” DNNs complicate greatly 

the formal verification of their behavior [8]. 

Problem: How can we mathematically prove that a neural network controller will always operate within 

specified safety boundaries, avoid collisions, or maintain stability under all permissible inputs and 

environmental conditions [9]? 

Challenges: Conventional formal verification techniques are impractical given the non-linear, high-

dimensional character of DNNs and their sensitivity to hostile attacks [10]. New mathematical methods are 

required to examine reachable sets of DNN-controlled systems, check Lipschitz continuity features, and 

formulate probabilistic safety promises [10]. The DNN-controlled system entails creating strong techniques 

for measuring uncertainty flow across neural networks and incorporating them into Control Lyapunov 

Functions (CLFs) or Control Barrier Functions (CBFs) [10], [11]. 

2.2|Uncertainty Propagation and Quantification 

Sensor noise, model errors, unexpected disturbances, and limited knowledge all contribute to the inherent 

uncertainty of real-world situations. Reliable operation is required for AI-driven robots despite this variability 

[12], [13]. 

Problem: How can we accurately quantify and propagate uncertainties through complex AI models and 

control loops [14], ensuring that decision-making accounts for these uncertainties in a principled manner? 

Bayesian approaches present an intriguing path, but their computational difficulty is their scaling to high-

dimensional robot states [15] and deep learning models. Still, an open area is developing tractable solutions 

for probabilistic inference [16], resilient state estimation (e.g., robust Kalman filters, particle filters for non-

Gaussian uncertainties), and decision-making under extreme uncertainty (e.g., using robust optimization or 

minimax control). An open area covers mathematically, defining how downstream control activities are 

affected by perception inaccuracies [16]. 

2.3|Oppositional Robustness 

Particularly deep learning models [17], AI systems are susceptible to adversarial attacks, in which case tiny, 

barely noticeable changes to inputs might produce very erroneous results. For robots, this might show up as 

misreading instructions, misidentifying things, or sensing phantom barriers [18]. 

Problem: How can we build AI-driven robot control systems that are certainly robust against adversarial 

perturbations in their sensor inputs or internal states [18]? 

Challenges: Modern adversarial training approaches might produce few assurances and could lower 

performance on clean data [19]. Understanding the geometry of adversarial instances in high-dimensional 

state spaces, creating certified robustness solutions for robotic applications, and designing control laws that 

are automatically resistant to such assaults require novel mathematical frameworks [20]. A novel mathematical 

framework investigates relations between control theory, game theory, and adversarial machine learning [21]. 

3|Adaptation and Learning 

Although AI's strength is in its learning, current learning paradigms for robot control confront major 

mathematical challenges regarding efficiency, generalization, and continuous adaptation. 
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  3.1|Reinforcement Learning Sample Efficiency 

Although RL, has had outstanding performance in simulated environments, its use on actual robots is 

sometimes hindered by great sample inefficiency [3], [4]. Training, a robot in the actual world is expensive, 

labor-intensive, and possibly dangerous [3], [4]. 

Problem: How can we create mathematically grounded RL systems that learn optimal or near-optimal control 

policies with much less real-world contact [22]? 

Challenges: This covers research into model-based RL (Learning dynamics models), off-policy learning, 

transfer learning from simulation to reality (Sim-to-real), and efficient exploration strategies [23]. 

Mathematically means improving knowledge of the circumstances for successful policy transfer, developing 

tighter bounds on sample complexity [24], and creating best experimental design plans for robot learning. 

Active research fields include Bayesian optimization, meta-learning, and information-theoretic approaches to 

exploration. 

3.2|Lifelong and Continuous Learning 

Robots used in the real world need to constantly change to new circumstances, dynamic surroundings, and 

fresh jobs without forgetting earlier acquired abilities (Catastrophic forgetting) [25]. 

Problem: How can we mathematically model and solve the issue of lifelong learning for robot control [26], 

therefore allowing continuous adaptation and skill acquisition without performance drop on past tasks? 

Challenges: This calls for fresh mathematical models for knowledge representation, memory management 

[27], and transfer learning with incremental policy and model updating. Relevant are methods from 

biologically inspired neural architectures, concept drift adaptation [28], and online learning. It is essential to 

create metrics and theoretical guarantees for measuring and guaranteeing good transfer and to minimize 

catastrophic forgetting in robotic applications [29]. 

3.3|Generalization and Out-of-Distribution Robustness 

One of the main drawbacks of modern AI systems is their weak generalization to data or circumstances much 

different from their training distribution (Out-of-Distribution (OOD)) [8]. For robots, this means that a 

policy developed in one context might perform horrifically in another rather similar environment [30]. 

Problem: How can we mathematically characterize and enhance the generalization abilities of AI-driven robot 

controllers to fresh [30], unfamiliar settings and duties? 

Challenges: This calls for a deeper knowledge of the inductive biases of learning algorithms [31], the intrinsic 

dimensionality of robotic tasks, and the creation of domain adaption methods with robust theoretical 

guarantees. Mathematical bases for developing more generalizable robot behaviors can be found in causal 

inference, invariant learning, and robust optimization [32]. 

4|Human–Robot Interaction 

Complex mathematical models are required to comprehend human intent [33], guarantee safe cooperation, 

and build trust so that robots may be smoothly and safely integrated into human surroundings. 

4.1|Intent Prediction and Inference 

Robots must correctly infer and project human intentions [34], goals, and future actions for efficient 

teamwork. 

Problem: How can we enable proactive and cooperative robot behavior by means of strong mathematical 

models for real-time human intent inference [34], particularly in uncertain or partially visible situations? 
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  Challenges: Major mathematical problems are quantifying the uncertainty in intent predictions and creating 

control policies resistant to misinterpretations [34]. This also covers knowledge of cognitive states and human 

tastes [34]. 

4.2|Shared Autonomy and Variable Autonomy 

Many HRI situations include shared control between the person and the robot [35], or the degree of robot 

autonomy changes depending on context. 

Problem: How can we mathematically devise optimal control strategies for shared autonomy systems, 

guaranteeing safety [36], efficiency, and user satisfaction that flawlessly mix human input with robot 

autonomy? 

Challenges: In this include human factors, optimal control, and dynamic system modeling. Mathematical 

models are required for human trust, cognitive load, and error propagation in shared control loops [18]. This 

also entails creating arbitration systems and hand-over procedures with official assurances [37]. 

4.3|Robot Decisions Can Have Ethical Ramifications as They Become More 

Autonomous 

Of first importance is guaranteeing honesty [38], responsibility, and fairness in robot behavior. 

Problem: Directly into the mathematical formulation of robot control objectives and learning algorithms [38], 

how can we embed ethical principles and fairness limitations? 

Challenges: This is a developing but essential field. It entails transforming abstract ethical ideas into 

measurable mathematical limits (e.g., ensuring non-discrimination, minimizing harm, maximizing societal 

benefit) [39]. Mathematical limits may include constrained optimization, multi-objective optimization, and the 

integration of social welfare functions into control design [39]. 

5|Regulation of Complex Robotic Systems 

Managing big, varied, or very dynamic robotic systems presents special mathematical difficulties. 

5.1|Decentralized Control and Multi-Robot Coordination 

Often in a dispersed way without a centralized coordinator [40], many real-world projects involve teams of 

robots working together to meet shared objectives. 

Problem: How can we create scalable and strong mathematical frameworks for decentralized control and 

coordination of big multi-robot systems [40], therefore guaranteeing emergent desirable behaviours and 

preventing undesirable ones? 

Challenges: In this include swarm intelligence, graph theory, game theory, and distributed optimization [41]. 

A major mathematical difficulty is guaranteeing stability, convergence, and fault tolerance in decentralized 

learning and control techniques [42]. This also covers constrained control, task delegation, and resource 

distribution among communications [43]. 

5.2|Hybrid Systems and Event-Triggered Control 

Many robotic systems have hybrid dynamics, that is, a mix of continuous physical movement and discrete 

logical transitions (e.g., switching between modes, contact events) [44]. 

Problem: Especially when AI components control the discrete transitions [45], how can we create 

mathematically precise techniques for designing and validating controllers for hybrid robotic systems? 

Challenges: This calls for formal methods, discrete event systems [46], and continuous control theory. Key 

mathematical issues are guaranteeing Zeno behavior avoidance [45], stability across mode changes, and 
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  robustness to uncertainties in event detection. Event-triggered control [47] where control updates occur only 

when needed provides efficiency but complicates stability analysis. 

5.3|Soft Robots and Deformable Bodies 

Soft robots' innate compliance and infinite-dimensional state spaces call into question conventional rigid-

body control approaches. 

Problem: Particularly when AI is used to learn their intricate, non-linear dynamics [47], how can we create 

mathematical models and control techniques for very deformable soft robots? 

Challenges: This combines continuum mechanics, functional analysis, and innovative techniques for state 

estimation and control of high-dimensional [48], non-linear systems. Significant mathematical difficulties arise 

in learning correct forward and inverse models for soft robots and developing controllers able to use their 

compliance for safe interaction. 

6|State Estimating and Perception 

Robot control is built on accurate state estimation [49] and perception; AI has transformed these fields, but 

open mathematical challenges still exist. 

6.1|Strong Semantic Perception and Sensor Fusion 

To create a complete picture of their surroundings [50], robots use several sensors (cameras, LiDAR, IMUs). 

AI-driven perception systems can extract high-level semantic information. 

Problem: How can we mathematically fuse heterogeneous sensor data, including semantic information, in a 

robust and computationally efficient manner to provide accurate and reliable state estimates for control [51]? 

Problems: This entails robust estimation approaches, deep learning for feature extraction, and probabilistic 

graphical models. An open field is quantifying the uncertainty in semantic labels and integrating it into state 

estimation frameworks (e.g., semantic SLAM) [52]. Equally important is strong handling of sensor 

malfunctions, occlusions, and new objects. 

6.2|State Estimation with Limited Observability 

Many robotic jobs require dealing with limited knowledge [53] regarding the surroundings or the robot's 

condition. 

Question: How can we create mathematically correct techniques for optimal state estimation and control 

under high partial observability, especially when AI models are applied to predict missing data [53]? 

Challenges: This entails Partially Observable Markov Decision Processes (POMDPs), but realistically robot 

applications would find scaling them impractical [54]. There are needed approximate inference techniques, 

active perception strategies, and information-theoretical approaches to sensing [55]. 

7|Clarification and Interpretability 

Many AI models applied in robot control have a "black-box" quality that hinders trust and debugging [56]. 

7.1|Control through Interpretable and Explainable Artificial Intelligence  

For debugging, certification, and human supervision, knowing why an AI-driven robot makes a specific 

choice is essential [57]. 

Problem: How can we create mathematical models to ensure that human operators can understand and 

explain the decision-making processes of AI-driven robot controllers [58]? 
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  Challenges: This goes beyond just picturing neural network activations. It entails creating techniques to draw 

human-understandable rules or explanations from intricate policies [59], attribute control actions to certain 

inputs, and measure the "reasonableness" of a robot's behavior. Intricate policies may entail symbolic AI 

integration, counterfactual explanations, or saliency maps [11]. 

8|Real-Time Limitations and Computational Efficiency 

Most robotic applications demand real-time operation, whereas some sophisticated AI techniques are 

computationally demanding [60]. 

8.1|Resource-Constrained Artificial Intelligence for Edge Robotics 

A major difficulty is deploying sophisticated AI models on limited robot hardware (e.g., limited CPU, GPU, 

memory, power) [61]. 

Problem: While maintaining performance and safety guarantees, how can we create mathematically optimal 

techniques for compressing, quantizing, and optimizing AI models for effective run on edge robotic systems 

[32]? 

Challenges include hardware-aware co-design, efficient architectures (e.g., MobileNets), quantization, and 

neural network pruning [62]. Important establishing theoretical limits on the performance loss caused by 

model compression and guaranteeing real-time performance. 

8.2|Real-Time Control and Optimization 

Many control challenges entail real-time, under tight deadlines, resolution of sophisticated optimization issues 

[63]. 

Problem: Often with AI-driven parts, how can we create mathematically efficient algorithms for real-time 

optimal control and motion planning capable of handling high-dimensional state spaces and non-linear 

dynamics [64]? 

Challenges: This calls for progress in approximate dynamic programming, Model Predictive Control (MPC), 

and numerical optimization [65]. Active areas include utilizing AI for warm-starting optimization issues [66], 

developing effective solvers, or directly learning control policies satisfying real-time limitations. 

9|Conclusion 

An interesting frontier with great possibilities to transform many sectors and facets of daily life is the 

incorporation of AI into robotic control systems. Unlocking this capability entirely, however, calls for solving 

a host of fundamental mathematical unsolved issues. From guaranteeing the demonstrable safety and 

dependability of neural network controllers to allowing robots to learn effectively, generalize well, and interact 

naturally with people, every obstacle calls for innovative mathematical understanding and serious theoretical 

frameworks. 

An interdisciplinary study at the interface of control theory, machine learning, optimization, formal methods, 

and applied mathematics should reveal answers to these issues. Improvement in these fields not only enhances 

the capacities of individual robots but also clears the path for the development of intelligent, dependable, and 

trustworthy autonomous systems capable of safely and efficiently navigating complicated, erratic, and human-

centric surroundings. Fundamentally, a mathematical one, the road to completely autonomous and intelligent 

robots calls for continuous work and invention to close the current theoretical gaps. 
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