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1|Introduction    

The swift evolution of remote sensing technologies has made high-resolution satellite imagery widely 

available, creating unique opportunities for the analysis and management of land resources. The Land Use 

and Land Cover (LULC) segmentation, a prominent application of such imagery, is critical in land 

management domains, including urban planning, agricultural monitoring, environmental conservation, and 

disaster response. Precisely segmenting satellite images into distinct land cover types—such as urban areas, 

forests, water bodies, and agricultural lands—is vital for well-informed decision-making in these fields [1]. 

This need has spurred increasing efforts toward developing reliable and efficient LULC segmentation models 

that can address the inherent complexities of the task. As the demand for accurate, high-resolution LULC 

maps grows, particularly with the increasing availability of satellite data, new methodologies and innovations 

in image analysis are becoming indispensable to meeting these challenges [2].  
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Abstract 

The Land Use and Land Cover (LULC) segmentation represents a critical challenge in environmental monitoring 

and sustainable development. Traditional Convolutional Neural Networks (CNNs) excel at local pattern recognition 

but struggle with comprehensive spatial understanding, while transformer architectures capture global contexts at 

significant computational expense. This research introduces an innovative hybrid model that strategically combines 

the strengths of CNNs and vision transformers. We develop a segmentation approach that transcends existing 

methodological limitations by efficiently extracting local features through CNNs and leveraging transformers' ability 

to comprehend long-range dependencies. The proposed framework achieves a high accuracy of nearly 95 % and a 

mean Intersection over Union (IoU) of nearly 91% with reduced computational complexity, making advanced 

geospatial analysis more accessible. This approach advances technical capabilities and empowers researchers and 

policymakers with precise, timely insights into landscape dynamics, enabling more informed environmental decision-

making across diverse geographical contexts.  
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  Transformers, which transformed natural language processing, have also been adapted for computer vision 

tasks, leading to the creation of vision transformers. These models capture long-range dependencies in images, 

unlike traditional Convolutional Neural Networks (CNNs), which primarily focus on local regions [3]. Vision 

transformers have demonstrated superior performance in capturing global context and object relationships 

in images, making them highly valuable for tasks like LULC segmentation, where the spatial distribution and 

interrelationships of land types across large areas are crucial. Similarly, Segmentation Transformers (SETRs) 

have shown remarkable success in image segmentation tasks. However, SETRs often face limitations in 

handling large images due to the high computational demands of the self-attention mechanism, which 

compares every pixel to all other pixels, creating scalability issues. As a result, optimizing these models for 

large-scale image datasets, such as those produced by satellite imaging, remains a key area of active research. 

CNNs, while powerful, often struggle to handle boundaries in remote sensing images accurately. Traditional 

methods treat all boundaries the same, ignoring their diverse nature. However, boundaries in remote sensing 

are crucial, as they represent transitions between different land cover types. These transitions can vary widely, 

from sharp to gradual, and can be influenced by factors like shadows in high-resolution images. Current 

methods often use boundary information as an intermediate feature, limiting its impact on the final 

classification. It is essential to associate boundaries with specific categories to achieve optimal results. Refining 

boundary information and categorizing transitions between land cover types can significantly improve 

segmentation accuracy and preserve fine-grained details in satellite images. 

To improve LULC classification, researchers have explored various deep-learning techniques. Patch-based 

approaches, which divide images into small segments and classify each as a unit, can introduce 

misclassification errors if patches contain pixels from multiple classes. This approach overlooks spatial 

coherence within patches, leading to inaccuracies in boundary areas, where multiple land cover types may 

converge. In contrast, pixel-based approaches classify each pixel individually, reducing misclassification risks 

and providing a more detailed, fine-grained classification of land cover types. While unsupervised learning 

methods, such as those utilized by Kussul et al. [4], typically require substantial training data and are 

constrained by their reliance on inherent image features without label guidance, supervised learning methods, 

as demonstrated by Torres et al. [5], have shown effectiveness with smaller datasets, offering greater flexibility 

and adaptability when labeled data is limited. 

Most methods treat all image boundaries similarly, ignoring their diverse nature. Treating Image boundaries 

similarly can lead to information loss. Boundaries in remote sensing images are significant, as they represent 

transitions between different land cover types. These transitions vary widely, from sharp to gradual, and can 

be influenced by factors like shadows. Current methods often use boundary information as an intermediate 

feature, limiting its impact on the final classification. To improve accuracy, it is essential to associate 

boundaries with specific categories. Traditional methods like patch-based and pixel-based approaches have 

limitations. Patch-based methods can misclassify patches with multiple classes, while pixel-based methods 

may overlook contextual information. Unsupervised methods require large datasets, while supervised 

methods can be more effective with smaller datasets.  

The main contribution of this paper can be summarized as the following. 

Proposal of an architecture that uses a modified lightweight Vit encoder with patch embeddings and Multi-

Head Self-Attention (MHSA) mechanism to capture and process multiple inputs at a time, which are 

connected to the Feature Pyramid Network (FPN) decoder for performing semantic segmentation using 

features extracted by the transformer. The FPN decoder helps in the drastic reduction of the original 

parameters while still maintaining the required efficiency. 

The architecture leverages the power of a transformer with an attention mechanism that gives several 

advantages over the traditional CNN method for capturing features, as it has global context awareness, 

dynamic feature selection property, parallelization efficiency, and multiple scale feature integration. 
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  The use of semi-supervised Conditional Random Fields (CRFs) has proven to be a significant step as it helps 

to refine the predicted segmentation masks by improving the alignment of object boundaries and reducing 

noise. It leverages labeled data (Supervised) and unlabelled data (Unsupervised) to enhance segmentation 

accuracy. This paper contributes to the semantic segmentation of satellite imagery for proper LULC mapping 

by proposing a lightweight model architecture.  

The rest of the paper is structured as follows:  

The literature survey is discussed in Section 2. Section 3 describes the methodology, including dataset, data 

preprocessing, and model architecture. Section 4 discusses the results and outcomes of the method used. 

Section 5 includes evaluation metrics used. Finally, Section 7 concludes this paper. 

2|Literature Survey 

Towards the advancements of segmentation of satellite images, Unet has been a remarkable model for 

segmentation tasks. However, the proposed model, mUnet, is based on a modified U-Net architecture 

designed for pixel-level semantic segmentation. This model follows an encoder-decoder, or ladder-like, 

structure that uses convolutional layers to encode features, followed by decoding layers that reconstruct a 

segmented output. Compared to traditional methods, mUnet is advantageous due to its lower number of 

trainable parameters, making it more efficient, and demonstrates superior segmentation performance on high-

resolution, 3-band FCC satellite imagery [6]. 

Multipath Feature Fusion Network (MPFFNet) is a novel method for precise LULC classification, especially 

for high-resolution satellite images. It effectively merges deep learning techniques with traditional image 

processing, particularly Gabor filters. By combining both strengths, MPFFNet surpasses previous methods, 

especially in fine-grained classification tasks, delivering superior results [7]. The study focuses on pixel-level 

land cover classification using satellite imagery for monitoring and change detection applications. It employs 

U-Net with different ResNet backbones (ResNet18, ResNet34, ResNet101) for segmentation tasks. Among 

the configurations, the highest mean Intersection over Union (IoU) of 85.1 was achieved with U-Net and 

ResNet101, highlighting its effectiveness for high-resolution segmentation and detailed land cover mapping. 

The paper introduces a novel approach to classify land cover accurately in medium-resolution satellite images. 

It leverages the power of the Swin Transformer, a state-of-the-art deep-learning architecture renowned for 

its ability to capture long-range dependencies within data. The Swin Transformer makes it particularly well-

suited for analyzing medium-resolution images, where traditional methods often struggle due to limited spatial 

information. The paper incorporates an improved Swin Unet model designed explicitly for image 

segmentation tasks to enhance performance. Additionally, the authors integrate preprocessing, image 

enhancement, and spectral selection techniques to optimize the model's input data. By combining these 

advanced techniques, the proposed method significantly improves classification accuracy, making it a valuable 

tool for various Earth observation applications. 

This work employs a Fully Convolutional Network (FCN-8) with VGG-16 weights for semantic segmentation 

of high-resolution satellite images into four LULC categories: Forest, built-up, farmland, and water. A non-

overlapping grid-based approach is proposed to enhance segmentation accuracy. The FCN-8 model 

researches low-resolution features onto high-resolution pixel space for dense classification. Tested on the 

Gaofen-2 dataset, the model achieved an average accuracy of 91.0% and an IoU of 84.2% [8]. It combines a 

Denoising Diffusion Probabilistic Model (DDPM) for refined semantic features and a vision transformer for 

global context. DDPM for LULC segmentation and feature-level fusion between DDPM and Transformer 

for improved segmentation accuracy [9]. The model uses a diffusion-based U-Net to effectively capture 

multiscale features, including detailed context and edge information, making it ideal for high-resolution 

segmentation. It also includes a lightweight classification module with a spatial-channel attention mechanism 

that helps the model focus on the most important spatial and channel features. Incorporating unsupervised 
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  pre-trained components addresses class imbalance and speeds up training. This approach not only improves 

accuracy but also reduces complexity and training time [10]. 

3|Methodology 

This research aimed to develop a powerful yet efficient semantic segmentation model designed explicitly for 

LULC mapping. The challenge was balancing model complexity and computational efficiency while still 

achieving high-quality, accurate results. To accomplish this, we proposed a hybrid model architecture that 

combines the strengths of a lightweight transformer with a CNN decoder. The transformer component uses 

MHSA and a Multi-Layer Perceptron (MLP) to capture global and local spatial details within each image 

effectively. These layers enable the model to understand broader contextual relationships and finer details 

simultaneously. The CNN decoder then hierarchically processes and stacks these features, structuring them 

to enhance the model's ability to distinguish between different classes. Finally, the processed features are 

passed to the segmentation head, which produces the output mask in the desired shape, allowing for accurate 

LULC mapping while keeping computational demands manageable. Fig. 1 shows the workflow component 

required for practical model training and predictions. 

 

 

 

 

 

 

 

 

Fig. 1. The workflow component required for practical model training and predictions. 

 

3.1|Deep Globe Land Cover Dataset 

This dataset offers high-resolution satellite images, each with dimensions of 2448x2448 pixels, which allows 

for fine-grained segmentation of various land cover classes. The dataset is organized into train and test folders, 

each containing images paired with their corresponding segmentation masks [11]. These masks serve as 

ground truth for evaluating segmentation performance. The dataset defines multiple land cover categories, 

each represented by unique RGB values in the segmentation masks. Table 1 below provides details on the 

class labels, corresponding RGB values, and a brief description of each class: 

Table 1. Class labels and their corresponding RGB values of the dataset. 

 

 

 

 

 

 

 

Class Labels RGB 
Values 

Description 

Urban land (0,255, 255) Artificial, built-up areas with human artifacts (Ignoring roads) 

Agriculture land (255, 255, 0) Farms, plantations, cropland, orchards, vineyards, nurseries, 
and confined feeding operations 

Rangeland (255, 0, 255) Non-forest, non-farm, green land, grass 

Forest land (0, 255, 0) Land with significant tree cover, including clear-cuts 

Water (0, 0, 255) Rivers, oceans, lakes, wetlands, ponds 

Barren land (255, 255, 
255) 

Mountain, land, rock, desert, beach, no vegetation 

Non-observed area (0, 0, 0) Clouds and other unclassified areas 
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  3.2|Land Cover Dataset 

The dataset delineates various land cover categories, each encoded with distinct RGB values in the 

segmentation masks [10]. These color-coded masks enable pixel-level classification, where each color 

represents a specific land cover class. Below is a comprehensive Table 2 that outlines the class labels, RGB 

values, and corresponding descriptions: 

Table 2. Class labels and their corresponding RGB values of the dataset. 

 

 

 

 

 

3.3|Technical Significance of Class Encoding 

Pixel-level accuracy 

Each pixel in the segmentation mask corresponds directly to a specific land cover class, ensuring high 

granularity in classification tasks. The pixel allows models to learn fine distinctions between visually similar 

but semantically distinct regions. 

Color-coding for efficient segmentation 

The distinct RGB values assigned to each class help distinguish between different land cover types. The RGB 

values facilitate the training of deep learning models, where accurate pixel classification is critical. 

Balanced representation 

The diversity of classes, ranging from natural environments like forests and water bodies to human-made 

areas such as urban and agricultural land, ensures a comprehensive representation of land cover types. The 

diversity of classes is particularly important for generalizing segmentation models to diverse geospatial 

datasets.  

Non-observed  

Including a "Non-observed Area" class (Represented by black) ensures that regions obscured by clouds or 

other anomalies do not interfere with the training process, improving model robustness. 

3.4|Data Preprocessing 

Data preprocessing was a crucial step in the training pipeline, significantly enhancing the dataset's quality and 

diversity. This step ensured that the model could generalize effectively across various real-world scenarios by 

simulating different conditions through data augmentation techniques. 

Spatial transformations  

To introduce spatial variability, we applied transformations such as: 

I. Cropping: Randomly extracting sections to help the model learn from different parts of the image. 

II. Flipping and rotating: Altering image orientation ensures the model recognizes patterns from multiple 

perspectives. 

III. Resizing: Adjusting the dimensions to meet model input requirements while preserving image structure. 

These augmentations helped the model handle changes in the position and orientation of objects within the 

images. 

Class Labels RGB Values Description 

Background (255, 255, 255) Unlabelled or background pixels 

Buildings (255, 0, 0) Artificial structures like houses, buildings, and factories 

Woodland (0, 255, 0) Areas with significant tree cover, including forests and parks 

Water (0, 0, 255) Bodies of water like rivers, lakes, oceans, and ponds 

Non-observed area (0, 0, 0) Areas obscured by clouds or not classified in the dataset 
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  3.5|Intensity and Contrast Adjustments 

We incorporated techniques to simulate varying lighting conditions: 

I. Brightness and gamma adjustments: Modulating brightness and luminance to mimic different exposure 

levels. 

II. Contrast Limited Adaptive Histogram Equalization (CLAHE): Enhancing local contrast for better clarity in 

darker regions. 

These adjustments improved the model’s robustness to varying lighting conditions, ensuring effective 

performance under different illumination scenarios. 

3.6|Colour and Noise Variations 

To simulate environmental changes and sensor noise, we used: 

I. Hue and saturation adjustments: Modifying color tones to account for vegetation and water appearance 

variations. 

II. Gaussian blur and noise: Mimicking atmospheric distortion and sensor noise to make the model resilient 

to degraded images. 

3.7|Coarse Dropout for Robust Feature Learning 

By randomly erasing parts of the images using coarse dropout, we forced the model to focus on critical 

features, preventing over-reliance on specific regions. These augmentation techniques enhanced the model's 

ability to handle diverse input variations, ultimately improving generalization and segmentation performance. 

4|Model Architecture 

In this research, we implemented a hybrid architecture for semantic segmentation, combining a modified 

lightweight transformer for feature extraction with an FPN decoder and CRF for post-processing. This 

combination enhanced segmentation quality by refining edges and improving boundary definition, resulting 

in smoother, more accurate masks. Query: Describe the architecture represented in Fig. 2.  

Fig. 2 illustrates a deep learning architecture for image segmentation, likely applied to satellite imagery for land 

management. It employs a Vision Transformer Encoder to extract hierarchical features from the input image. 

These features are fed into an FPN Decoder, aggregating multiscale information to generate a detailed 

segmentation mask. Skip connections between the encoder and decoder help preserve fine-grained details, 

and a CRF is used post-processing to refine the segmentation output. 

Fig. 2. Model architecture. 
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  4.1|Vision Transformer Encoder 

At the core of the architecture is a modified transformer, which replaces traditional CNN-based encoders. 

Transformers excel at capturing global context through their attention mechanisms. However, to ensure 

efficiency, several optimizations were made: 

I. Reduced number of blocks: A smaller number of transformer blocks was used, reducing computational 

overhead while retaining the core advantages of the attention mechanism. 

II. Drop-path regularization: Drop-path randomly turns off specific pathways during training, improving 

model robustness and preventing overfitting. 

III. Lightweight design: Careful adjustments were made to the architecture to reduce the number of 

parameters, ensuring a balance between computational efficiency and feature extraction capability. 

4.2|Feature Pyramid Network Decoder 

Following the encoder, we utilize an FPN decoder to create a hierarchical structure of feature maps at 

different resolutions. The FPN decoder refines and integrates these feature maps using skip connections, 

which help preserve fine-grained details and broader contextual information from the encoder outputs. This 

hierarchical approach ensures the model can recognize objects at multiple scales, enhancing segmentation 

accuracy and detail. 

4.3|Segmentation Head 

The processed feature maps are then passed through multiple segmentation heads, each tailored to predict 

segmentation masks at specific levels of detail. These masks capture objects at varying scales, ensuring 

comprehensive object identification across the image. Finally, the individual predictions from each 

segmentation head are combined and upscaled to match the original input resolution. This step results in a 

high-quality segmentation mask that precisely delineates objects and boundaries in the image. 

4.4|Semi-Supervised Conditional Random Field 

We apply a CRF as a post-processing step to further enhance the segmentation quality. The CRF acts as a 

spatial filter, refining the segmentation mask by aligning boundaries more accurately with object edges and 

reducing noise. This semi-supervised approach allows the CRF to maintain consistency across the 

segmentation, yielding more polished and accurate segmentation results, and is given by the equation. This 

hybrid approach integrates transformers, pyramid networks, and CRF post-processing to create a powerful 

and flexible model for high-quality semantic segmentation across diverse scales and contexts. 

Evaluation metrics 

I. Jaccard index: In multi-class semantic segmentation, the Jaccard index, or IoU, measures the overlap 

between the predicted and ground truth segmentation masks for each class and tends to give equal weight 

to False Positives and False Negatives. Here is how it would be computed for N classes step by step: 

II. Dice Coefficient: The dice coefficient metric is closely related to the Jaccard index, which measures the 

similarity between the ground truth masks and the predicted mask.  

E(x) = ∑U(xi)

i∈L

+∑U(xi)

i∈U⏟            
Labeled and Unlabeled Data Unary Potentials

+ ∑ψ(xi, xj)

i,j⏟        

.

Pairwise Potentials for Smoothness

 
(1) 

Jaccard index =
1

N
∑

TPc

 TPc +  FNc +  FPc
. (2) 

Dice Coefficient =
2 ⋅ ∑(TPc)

∑(2 ⋅ TPc + FPc + FNc)
. (3) 
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  Loss function 

The loss function I have used here is the total weighted loss of both weighted cross entropy and dice loss to 

reach an optimal solution, as it considers the weighted sum of both components. The weighted cross-entropy 

penalizes class imbalance by assigning different weights to each class. At the same time, the Dice Loss 

measures the overlap between the predicted and ground truth masks, ensuring that the model improves in 

terms of segmentation quality. 

5|Results and Discussion 

The result of this proposed study is represented as follows: 

5.1|Deep Globe Dataset 

When the model was trained on the deep globe dataset, the results metrics gave the following results, as 

shown in Fig. 3, followed by the bar graph, as shown in Fig. 4. 

Fig. 3. Plotting training vs. testing metrics graph for the deep globe dataset. 

 

Weighted Cross-Entropy Loss =
1

C
∑(−wc ⋅ (∑gi,c

N

i=1

log(pi,c) + (1 − gi,c) log(1 − pi,c))) .

C

c=1

  

Dice Loss =
1

C
∑(1−

2 ⋅ ∑ pi,c
N
i=1 ⋅ gi,c

∑ pi,c
N
i=1 + ∑ gi,c

N
i=1 + ϵ

) .

C

c=1

  

Total Loss = λ1 ⋅
1

C
∑(−wc ⋅ (∑gi,c

N

i=1

log(pi,c) + (1 − gi,c) log(1 − pi,c)))

C

c=1

+ λ2

⋅
1

C
∑(1−

2 ⋅ ∑ pi,c
N
i=1 ⋅ gi,c

∑ pi,c
N
i=1 + ∑ gi,c

N
i=1 + ϵ

) .

C

c=1
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Fig. 4. Metric bar graph depicting results. 
 

The result of both training and testing samples from the dataset is shown in Table 3. 

Table 3. Result metric table for deep globe dataset. 

 

 

 

 

Fig. 5 shows the visualization of results obtained with the original image, ground truth masks, and the 

predicted masks. 

Fig. 5. Visualization of results on the deep globe dataset. 

 

Metric  Training Samples Testing Samples 

Loss 0.5421 0.5789 

Dice coefficient 0.9201 0.8893 

Jaccard index 0.8823 0.8756 

Accuracy 0.951 0.943 
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  5.2|Land Cover Dataset 

When the model was trained on the deep globe dataset, the results metrics gave the following results, as 

shown in Fig. 6, followed by the bar graph, as shown in Fig. 7. 

Fig. 6. Plotting training vs. testing metrics graph for the land cover dataset. 

 

Fig. 7. Metric bar graph depicting results. 

The results of both training and testing samples from the dataset are shown in Table 4. The result metric table 

for the land cover dataset is presented in Table 4.  

Table 4. Result metric table for land cover dataset. 

 

 

Metric  Training Samples Testing Samples 

Loss 0.419 0.443 

Dice coefficient 0.9208 0.8997 

Jaccard index 0.9001 0.8829 

Accuracy 0.954 0.948 
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  The proper visualization of the model trained on the land cover dataset with its original image, ground truth 

masks, and the predicted masks is shown in Fig. 8 for the dataset. 

Fig. 8. Visualization of results on land cover dataset. 

 

The discussion of the proposed problem is shown in Fig. 4-8. The deep learning model, integrating a Vision 

Transformer encoder, FPN decoder, and CRF model, and trained with the Adam optimizer and a combined 

loss function of weighted cross-entropy and Dice loss with L2 regularization, demonstrated robust 

performance on both the Deep Globe and Land Cover datasets. Both datasets exhibited similar trends, with 

training metrics consistently outperforming testing metrics, suggesting effective learning but potential 

overfitting. The model achieved impressive results across all metrics, particularly in accuracy, Dice coefficient, 

and Jaccard index, indicating strong pixel-level classification capabilities. While the Deep Globe dataset 

presented a slightly higher loss (0.5421 vs. 0.419), both datasets showcased the model's ability to extract 

meaningful features and generate accurate predictions. To further enhance performance, future research could 

explore advanced regularization techniques, more sophisticated data augmentation strategies, refined 

hyperparameter tuning, and innovative model architectures, such as incorporating self-attention mechanisms 

or exploring hybrid approaches combining CNNs with transformers. 

6|Comparative Analysis 

Table 5 highlights the performance of various segmentation models based on multiple metrics, including the 

Accuracy Index, Dice Coefficient, F1-score, Precision, Recall, and Accuracy. The mUnet model demonstrates 

a Jaccard Index 70.6, with solid Precision and Recall values (87.13 and 85.66, respectively), but lacks Dice 

Coefficient data. MPFFNET shows a higher Jaccard Index of 81.02 and a notable F1-score of 92.1, indicating 

strong performance. The Unet++ with ResNet101 improves further with a Jaccard Index of 87.1, a Dice 

Coefficient of 88.23, and the highest accuracy (92.06%). DDPM-SegFormer exhibits impressive results with 

a Jaccard Index of 83.57 and a high Precision (91.72) alongside strong Recall (90.23). The Swin-Unet 

Transformer model also demonstrates competitive performance, with a Jaccard Index of 85.9 and a high F1-

score of 93.89. Finally, the Proposed Model outperforms all others with a Jaccard Index of 90.01, a Dice 

Coefficient of 92.08, and the highest Accuracy of 95.1%, showcasing its highly reliable segmentation 

performance across all metrics. 
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  Table 5. Comparative analysis of various models with the proposed model. 

  

 

 

 

 

 

7|Conclusion 

This study developed a hybrid deep learning model by integrating a Vision Transformer encoder, an FPN 

decoder, and a Semi-Supervised CRF for boundary refinement. This architecture balanced segmentation 

accuracy and computational efficiency, with the ViT capturing long-range dependencies through global 

attention and the FPN aggregating multiscale features for precise boundary delineation. The CRF further 

enhanced segmentation quality by refining edge boundaries, ensuring smoother and more accurate 

predictions. The model was trained using the Adam optimizer with a combined loss function of weighted 

cross-entropy and Dice loss, complemented by L2 regularization to prevent overfitting. Training results 

showed consistently higher metrics than testing, suggesting effective learning but highlighting potential 

overfitting. Despite this, the model demonstrated strong pixel-level classification capabilities, achieving high 

scores in accuracy, Dice coefficient, and Jaccard index, indicating robust feature extraction and prediction. 

Future iterations will focus on reducing overfitting through advanced data augmentation, optimized 

regularization techniques, and exploring transfer learning to enhance adaptability across diverse geographic 

landscapes. Expanding the dataset to cover more varied terrain types and challenging environmental 

conditions will further improve the model's generalizability, solidifying it as a comprehensive solution for 

semantic segmentation across dynamic real-world scenarios. 

7.1|Future Direction 

I. Scaling to a multi-spectral dataset: The results shown above were trained and tested on the RGB dataset, 

but this is not the scenario in every case. The satellite images should be in a multi-spectral range for more 

advanced and detailed segmentation and better LULC mapping. 

II. Advanced loss functions: Exploring more sophisticated loss functions, such as focal loss for class 

imbalance and Dice coefficient loss for better overlap precision, could enhance model performance 

further. The loss functions will refine the pixel-level classification capabilities, particularly in challenging 

datasets. 

III. Transfer learning: Implementing transfer learning using pre-trained models on larger, domain-specific 

datasets will speed up convergence and improve performance, especially when adapting the model to new 

regions or environmental conditions. Transfer learning will ensure that the model can handle various 

semantic segmentation tasks. 

IV. Geographic adaptability: Future iterations will enhance the model's adaptability to diverse geographic 

landscapes, such as urban environments, agricultural fields, and natural terrains like forests and water 

bodies. This will help the model generalize better across varying terrain types and environmental 

challenges. 

V. Expansion of dataset diversity: Expanding the dataset to include a broader range of geographic regions 

and more complex environmental conditions, including seasonal variations, cloud cover, and occlusions, 

will improve the model’s robustness and generalizability. 

Model Used Jaccard Index Dice Coefficient F1-score Precision Recall Accuracy 

mUnet  70.6 - 69.84 87.13 85.66 88.05 

MPFFNET  81.02 - 92.1 86.94 87.32 89.0 

Unet++ with resnet101  87.1 88.23 87.95 85.23 88.19 92.06 

DDPM-SegFormer  83.57 85.14 90.97 91.72 90.23 93.89 

Swin- Unet 
transformer  

85.9 - 93.89 94.1 89.2 91.2 

Proposed Model 90.01 92.08 93.1 91.1 94.00 95.1 
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  VI. Boundary refinement improvements: Further optimizing the CRF component for better edge detection 

in complex regions will be explored to enhance the accuracy of boundary delineation, especially in areas 

with fine-grained details or ambiguous transitions between classes. 

VII. Real-time application testing: Finally, real-time applications in dynamic environments will be tested to 

evaluate how well the model performs in operational settings, ensuring it is ready for deployment in real-

world applications such as land cover mapping, environmental monitoring, and autonomous systems. 
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