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1|Introduction    

The precision and accessibility of earth observations have steadily improved due to ongoing advancements in 

space-based remote sensing, like the launch of the Planet and open-access Sentinel satellite constellations [1]–

[3]. Notably, sa]tellites with high revisit frequencies provide valuable insights into phenomena with complex 

temporal dynamics. Crop mapping, which is the main focus of this paper, leverages these temporal patterns 

and holds significant financial and environmental implications. Remote monitoring of agricultural lands is 

essential for fair distribution of agricultural subsidies amounting to 50 billion euros annually in Europe and 

22 billion euros in the US and for ensuring adherence to optimal crop rotation practices [4]–[6]. 

In a broader context, automated Satellite Image Time Series (SITS) analysis has significant value across diverse 

applications, such as tracking urban expansion and monitoring deforestation [7], [8]. The content and 

boundaries of agricultural parcels can be observed as panoptic segmentation of an image sequence. Panoptic 

segmentation involves assigning each pixel a specific class and unique instance label, making it a well-
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  established task in computer vision [9]. However, this task differs fundamentally from natural image or video 

sequences for SITS. Unlike videos, which require tracking objects over time and space; SITS involve static 

targets within a geo-referenced frame, eliminating the need for spatial tracking. Additionally, SITS operate on 

a consistent temporal frame, where acquisition timing provides critical data for modeling temporal dynamics, 

unlike video frames, where sequence numbers are often arbitrary. Finally, while Earth surface objects rarely 

obscure each other, analysis of SITS can be complicated by varying cloud cover. 

This paper addresses the challenge of distinguishing individual agricultural parcels by learning intricate and 

specific temporal, spatial, and spectral patterns unique to agricultural monitoring, such as plant growth stages, 

subtle border details, and rapid human activities like harvesting [10], [11]. Although deep neural networks 

have proven effective for pixel-level classification of such complex patterns, no approach is currently tailored 

for detecting individual objects in SITS. Previous methods in instance segmentation have focused on single 

satellite images only. Generally, specialized remote sensing techniques are limited to semantic or single-image 

instance segmentation, while panoptic segmentation models from computer vision require substantial 

adaptation to handle SITS [12]–[14]. 

We introduce U-net with Temporal Attention Encoder (U-TAE) to tackle this. This innovative spatio-

temporal encoder integrates multi-scale spatial convolutions and a temporal self-attention mechanism, 

allowing it to prioritize the most significant time acquisitions [15]. Unlike convolutional-recurrent methods 

that only capture temporal features at high or low spatial resolutions, U-TAE leverages predicted temporal 

masks to adaptively learn spatiotemporal features across multiple resolutions simultaneously. Additionally, we 

propose Parcels-as-Points (PaPs), the first end-to-end deep learning solution for panoptic segmentation in 

SITS, building on the efficient CenterMask network, which we modified for this task [16]–[18]. Finally, we 

present PASTIS, the first publicly available dataset designed for training and evaluating panoptic segmentation 

models on SITS, with over 2 billion annotated pixels spanning over 4,000 km². Our approach, tested on 

PASTIS, outperforms all re-implemented competing methods for semantic segmentation, establishing a new 

benchmark for SITS panoptic segmentation. 

2|Literature Review 

Extensive research exists on encoding satellite image sequences and panoptic segmentation of videos and 

single satellite images. 

Encoding satellite image sequences 

Early automated SITS analysis tools used traditional machine learning techniques [19]. However, deep 

convolutional networks have since enabled the extraction of more detailed spatial features [20]. Initially, 

temporal aspects were addressed through handcrafted temporal descriptors or probabilistic models, which 

have been effectively superseded by architectures such as recurrent, convolutional, or differential networks. 

More recently, attention-based methods have also been introduced. It has been adapted to encode sequences 

of remote-sensing images and has led to significant progress in pixel-wise and parcel-wise classification. In 

parallel, hybrid architectures relying on U-Net-type architectures for encoding the spatial dimension and 

recurrent networks for the temporal dimension are well suited for the semantic segmentation of SITS. In this 

paper, we propose to combine this hybrid architecture with the promising temporal attention mechanism. 

Instance segmentation of satellite images 

The initial step in panoptic segmentation is identifying individual instances, known as instance segmentation. 

Most instance segmentation methods in remote sensing focus on single-image acquisitions [21]. For example, 

several techniques have been developed to detect individual instances of trees, buildings, or fields. Some 

approaches begin with a border detection step and require postprocessing to define distinct cases. Other 

methods use segmentation as a preliminary step to compute cluster-based features, though they do not 

provide clear mappings of clusters to specific objects. Petitjean and Dacher [22] introduced a segmentation-

aided classification method for image time series; however, their approach segments each image separately 
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  without consistently identifying objects across the sequence. This paper presents the first end-to-end 

framework designed to perform semantic and instance segmentation on SITS jointly [23]. 

Panoptic segmentation of videos 

In extensive research on instance segmentation, Mask-RCNN is a leading method for natural images. 

Recently, Wang et al. [24] introduced CenterMask, a lighter and more efficient single-stage approach, which 

serves as a foundation for our work in this paper. Several methods aim to extend instance or panoptic 

segmentation techniques from images to video. However, as discussed in the introduction, SITS differ 

significantly from natural videos, necessitating specialized algorithmic and architectural modifications. 

3|Figures and Tables 

Fig. 1. Schematic diagram of the proposed U-net with temporal attention encoder model 

architecture for processing satellite image time series, showing the spatial encoder, 

temporal attention mechanism, and decoder components. 

Fig. 2. Panoptic segmentation. 
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  Table 1. Dataset description. 

 

 

 

 

 

 

 

Fig. 3. Distribution of states in the data. 

 

Fig. 4. Top 10 crop in the data. 

 

 

 

 

Dataset Listing of Attributes 

Crop String, crop name 

Vriety String, crop subsidary name 

State String, crops cultivatons/production place 

Quantity Integer, no of qointals, hectars 

Production Integer, no of years production 

Season Date time, medium (No of dayes), long (No of dayes) 

Unit String, tons 

Cost Integer, cost of cutivation and production 
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Fig. 5. Kernel density estimation of yield by crop. 

 

Here is a tabular description of the PASTIS dataset as presented in the document: 

Table 2. PASTIS dataset that presented in the document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance comparison between U-net with temporal attention encoder and 

baseline methods on agricultural yield prediction metrics. 

 

Attribute Description 

Dataset name PASTIS  

Image resolution 10 meters per pixel 

Image shape Each image sequence: 10 × 128 × 128 

Temporal range Images taken between September 2018 and November 2019 

Temporal observation ns 38 to 61 observations per sequence 

Spatial coverage Over 4,000 km² covering regions in 

Number of sequences France 2,433 sequences 

Total pixels Over 2 billion annotated pixels 

Spectral channels 10 channels (Non-atmospheric spectral bands of Sentinel-2, after 
atmospheric correction) 

Annotations Each pixel has a semantic label (18 crop types 
+ background) and a unique instance label for agricultural parcel boundaries 

Unique parcels 124,422 parcels with bounding boxes, pixel-precise masks, and crop-type 
annotations 

Cloud cover filtering Acquisitions with high cloud cover are filtered automatically 

Split folds 5-fold cross-validation with 1 km buffer 
between images in different folds to prevent contamination 
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Fig. 7. Qualitative results of panoptic segmentation on satellite imagery. 

 

4|Variables and Equations 

We consider an image time sequence X, organized into a four-dimensional tensor of shape T × C × H × W, 

with T the length of the sequence, C the number of channels, and H × W spatial extent. 

Our model, called U-TAE, encodes a sequence X in three main steps: 1) each image in the sequence is 

embedded simultaneously and independently using a shared multi-level spatial convolutional encoder, 2) a 

temporal attention encoder compresses the temporal dimension of the resulting sequence of feature maps 

into a single feature map per level, and 3) a spatial convolutional decoder generates a final feature map that 

matches the resolution of the input images. 

Spatial encoding  

We consider a convolutional en-coder ε with L levels 1, ..., L. Each level is composed of a sequence of 

convolutions, Rectified Linear Unit (ReLu) activations, and normalizations. Except for the first level, each 

block starts with a strided convolution, dividing the resolution of the feature maps by a factor 2. 

For each time stamp t simultaneously, the encoder εt at level / takes as input the feature map of the previous 

level et
t−1, and outputs a feature map et

t, of size C x H x Wi with H1 = H/2 − 1 and W = W/2 − 1. The 

resulting feature maps are then temporally stacked into a feature map sequence et of size Tx Cix H x W: 

With e0 = X and [0] the concatenation operator along the temporal dimension. When constituting batches, 

we flatten the temporal and batch dimensions. Since each sequence comprises images acquired at different 

times, the batches' samples are not identically distributed. To address this is- sue, we use Group Normalization 

with 4 groups instead of Batch Normalization in the encoder. 

5|Proposed Framework 

To achieve the project goal, the following requirements must be met: 

Data acquisition and preprocessing 

I. Satellite imagery: Acquire high-resolution satellite images from sources like Sentinel-1, Sentinel-2, Landsat, 

or MODIS [25]. 

II. Weather data: Collect meteorological data, including temperature, precipitation, humidity, and wind speed, 

from weather stations or APIs [26]. 

III. Soil data: Obtain soil maps and sampling data to characterize soil properties [27]. 

IV. Data cleaning: Handle missing values, outliers, and inconsistencies in the data. 

V. Data preprocessing: Apply image processing techniques (e.g., atmospheric correction, geometric correction) 

and feature extraction (e.g., vegetation indices, texture analysis) to prepare the data for modeling. 

et = [et(et
t−1)]Tt=0  t ∈ [1, L]. (1) 
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  Model development and training 

I. Feature engineering: Create relevant features from the preprocessed data, such as vegetation indices, texture 

features, and temporal trends. 

II. Model selection: Choose appropriate machine learning or deep learning algorithms (e.g., random forest, 

support vector regression, gradient boosting, convolutional neural networks, recurrent neural networks) 

based on data characteristics and problem complexity. 

III. Model training: Train the selected model(s) on the prepared dataset, optimizing hyperparameters for optimal 

performance. 

IV. Model evaluation: Evaluate the trained model(s) using appropriate metrics (e.g., mean squared error, root 

mean squared error, R-squared) and cross-validation techniques. 

Deployment and visualization 

I. Deployment: Deploy the trained model(s) to a suitable platform (e.g., cloud-based or local server) for real-

time or near-real-time yield predictions. 

II. Visualization: Develop user-friendly interfaces (e.g., web applications, dashboards) to visualize the input 

data, model predictions, and uncertainty estimates. 

6|System Design 

Design constraints 

I. Data availability: Ensure access to reliable and timely satellite imagery, weather data, and soil information. 

II. Computational resources: Utilize sufficient computational resources (e.g., cloud-based computing) to handle 

large datasets and complex models. 

III. Algorithm complexity: Select algorithms that balance accuracy and computational efficiency. 

IV. Data quality: Address data quality issues, such as noise, missing values, and outliers. 

7|Experimental Setup 

The proposed system architecture consists of the following modules: 

Data acquisition and preprocessing module 

I. Collect satellite imagery, weather data, and soil data from various sources. 

II. Clean and preprocess the data to remove noise, inconsistencies, and missing values. 

III. Extract relevant features from the data, such as vegetation indices, texture features, and temporal trends. 

Model development and training module 

I. Select and train appropriate machine or deep learning models on the preprocessed data. 

II. Evaluate the performance of the trained models using appropriate metrics. 

III. Optimize hyperparameters to improve model accuracy and generalization. 

Deployment and visualization module 

I. Deploy the trained model to a suitable platform for real-time or near-real-time predictions. 

II. Develop user-friendly interfaces to visualize input data, model predictions, and uncertainty estimates. 

Following this system design, we aim to develop a robust and efficient agricultural yield prediction system 

that can provide valuable insights to farmers, policymakers, and researchers [28]. 
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8|Experimental Results and Discussion 

The panoptic agricultural satellite time series dataset 

We introduce PASTIS, the first large-scale, publicly accessible SITS dataset featuring semantic and panoptic 

annotations1.  

The PASTIS dataset includes 2,433 sequences of multispectral images, each sized 10 x 128 x 128 pixels. Each 

sequence contains 38 and 61 observations taken from September 2018 to November 2019, totaling over 2 

billion pixels. 

Acquisition intervals are irregular, averaging 5 days due to automated cloud cover filtering by the satellite 

provider THEIA. The 10 channels correspond to the Sentinel-2 satellite's non-atmospheric spectral bands, 

processed with atmospheric correction and resampled to a 10-meter spatial resolution per pixel. This dataset 

covers roughly 4,000 square kilometers across four distinct regions of France with different climates and crop 

types, representing about 1% of the French Metropolitan area. Approximately 28% of the images have some 

degree of cloud cover. 

9|Conclusion 
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