Soft Intersection Almost Bi-quasi Ideals of Semigroups

Authors

https://doi.org/10.22105/scfa.v1i1.26

Abstract

The concept of bi-quasi ideal generalizes the notions of bi-ideals and quasi-ideals in a semigroup; similarly, the soft intersection bi-quasi ideal generalizes the concepts of soft intersection bi-ideals and soft intersection quasi-ideals in a semigroup. In this paper, we introduce the concept of  soft intersection almost bi-quasi ideal and its generalized concept, soft intersection weakly almost bi-quasi ideals, in a semigroup. In contrast to the soft intersection ideal theory, we demonstrate that every soft intersection almost bi-quasi ideal is also a soft intersection almost ideal and a soft intersection almost bi-ideal. Additionally, we show that every idempotent soft intersection almost bi-quasi ideal is a soft intersection almost subsemigroup, a soft intersection almost weak interior ideal, a soft intersection almost tri-ideal, and a soft intersection almost tri-bi-ideal. Furthermore, we derive several interesting relationships regarding minimality, primeness, semiprimeness, and strongly primeness between almost bi-quasi ideals and soft intersection almost bi-quasi ideals with the proven theorem stating that if a nonempty set  is an almost bi-quasi ideal, then its soft characteristic function is also a soft intersection almost bi-quasi ideal, and vice versa.

Keywords:

Soft set, Semigroup, Bi-quasi ideals, Soft intersection (Almost) bi-quasi ideals

References

  1. [1] Good, R. A., & Hughes, D. R. (1952). Associated groups for a semigroup. Bull. amer. math. soc, 58(6), 624–625.

  2. [2] Steinfeld, O. (1956). Uher die tri ideals, Von halbgruppend Publ. Math. debrecen, 4, 262–275.

  3. [3] Grošek, O., & Satko, L. (1980). A new notion in the theory of semigroup. Semigroup forum, 20(1), 233–240. https://doi.org/10.1007/BF02572683

  4. [4] Bogdanovic, S. (1981). Semigroups in which some bi-ideal is a group. Review of research faculty of science-university of novi sad, 11, 261–266. https://sites.dmi.uns.ac.rs/nsjom/Papers/11/NSJOM_11_261_266.pdf

  5. [5] Wattanatripop, K., Chinram, R., & Changphas, T. (2018). Quasi-A-ideals and fuzzy A-ideals in semigroups. Journal of discrete mathematical sciences and cryptography, 21(5), 1131–1138. https://doi.org/10.1080/09720529.2018.1468608

  6. [6] Kaopusek, N., Kaewnoi, T., & Chinram, R. (2020). On almost interior ideals and weakly almost interior ideals of semigroups. Journal of discrete mathematical sciences and cryptography, 23(3), 773–778. https://doi.org/10.1080/09720529.2019.1696917

  7. [7] Iampan, A., Chinram, R., & Petchkaew, P. (2021). A note on almost subsemigroups of semigroups. International journal of mathematics and computer science, 16(4), 1623–1629. https://www.researchgate.net/publication/352899613

  8. [8] Chinram, R., & Nakkhasen, W. (2022). Almost bi-quasi-interior ideals and fuzzy almost bi-quasi-interior ideals of semigroups. Journal of mathematics and computer science, 26(2), 128–136. https://doi.org/10.22436/jmcs.026.02.03

  9. [9] Gaketem, T. (2022). Almost bi interior ideal in semigroups and their fuzzifications. European journal of pure and applied mathematics, 15(1), 281–289. https://doi.org/10.29020/nybg.ejpam.v15i1.4279

  10. [10] Gaketem, T., & Chinram, R. (2023). Almost bi-quasi-ideals and their fuzzifications in semigroups. Annals of the university of craiova, mathematics and computer science series, 50(2), 342–352. https://doi.org/10.52846/ami.v50i2.1708

  11. [11] Wattanatripop, K., Chinram, R., & Changphas, T. (2018). Fuzzy almost bi-ideals in semigroups. International journal of mathematics and computer science, 13(1), 51–58. https://www.researchgate.net/publication/322854463

  12. [12] Krailoet, W., Simuen, A., Chinram, R., & Petchkaew, P. (2021). A note on fuzzy almost interior ideals in semigroups. International journal of mathematics and computer science, 16(2), 803–808. https://www.researchgate.net/publication/348130224

  13. [13] Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4-5), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5

  14. [14] Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers and mathematics with applications, 61(9), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011

  15. [15] Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: extended difference of soft sets. Journal of new theory, (27), 33–42. https://www.researchgate.net/publication/331521192

  16. [16] Stojanović, N. S. (2021). A new operation on soft sets: Extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655

  17. [17] Sezgin, A., Aybek, F. N. (2023). A new soft set operation: Complementary soft binary piecewise gamma (y) operation. Matrix science mathematic, 7(1), 27–45. https://doi.org/10.54286/ikjm.1304566

  18. [18] Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023). A new soft set operation: complementary soft binary piecewise intersection (∩) operation. Black sea journal of engineering and science, 6(4), 330–346. https://doi.org/10.34248/bsengineering.1319873

  19. [19] Sezgin, A., Aybek, F., & Güngör, N. B. (2023). New soft set operation: Complementary soft binary piecewise union operation. Acta informatica malaysia, 7(1), 38–53. http://doi.org/10.26480/aim.01.2023.38.53

  20. [20] Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star (*) operation. Ikonion journal of mathematics, 5(2), 24–52. http://doi.org/10.54286/ikjm.1304566

  21. [21] Sezgin, A., & Yavuz, E. (2023). A new soft set operation: Complementary soft binary piecewise lamda (λ) operation. Sinop üniversitesi fen bilimleri dergisi, 8(2), 101–133. https://doi.org/10.33484/sinopfbd.1320420

  22. [22] Sezgin, A., & Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189–208. https://doi.org/10.47112/neufmbd.2023.18

  23. [23] Sezgin, A., & Cagman, N. (2024). A new soft set operation: Complementary soft binary piecewise difference () operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58–94. https://doi.org/10.47495/okufbed.1308379

  24. [24] Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni-int decision making. European journal of operational research, 207(2), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004

  25. [25] Çaǧman, N., Çitak, F., & Aktaş, H. (2012). Soft int-group and its applications to group theory. Neural computing and applications, 21(SUPPL. 1), 151–158. https://doi.org/10.1007/s00521-011-0752-x

  26. [26] Sezer, A. S., Agman, N., Atagün, A. O., Ali, M. I., & Turkmen, E. (2015). Soft intersection semigroups, ideals and bi-ideals; a new application on semigroup theory I. Filomat, 29(5), 917–946. https://doi.org/10.2298/FIL1505917S

  27. [27] Sezer, A. S., Çaǧman, N., & Atagün, A. O. (2014). Soft intersection interior ideals, quasi-ideals and generalized bi-ideals; a new approach to semigroup theory II. Journal of multiple-valued logic and soft computing, 23(1–2), 161–207. https://www.researchgate.net/publication/263651514

  28. [28] Sezgin, A., & Orbay, M. (2022). Analysis of semigroups with soft intersection ideals. Acta universitatis sapientiae, mathematica, 14(1), 166–210. https://doi.org/10.2478/ausm-2022-0012

  29. [29] Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of mathematics, 26(3), 503–517. https://doi.org/10.11568/kjm.2018.26.3.503

  30. [30] Jana, C., Pal, M., Karaaslan, F., & Sezgin, A. (2019). (α, β)-soft intersectional rings and ideals with their applications. New mathematics and natural computation, 15(2), 333–350. https://doi.org/10.1142/S1793005719500182

  31. [31] Mustuoglu, E., Sezgin, A., & Kaya, Z. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International journal of computer applications, 155(10), 1–8. https://doi.org/10.5120/ijca2016912412

  32. [32] Sezer, A. S., Cagman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of fuzzy mathematics and informatics, 9(2), 235–246. https://www.researchgate.net/publication/264792690

  33. [33] Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of intelligent and fuzzy systems, 27(2), 1035–1046. https://doi.org/10.3233/IFS-131064

  34. [34] Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta universitatis sapientiae, mathematica, 12(2), 317–346. https://doi.org/10.2478/ausm-2020-0023

  35. [35] Atagun, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Mathematical sciences letters, 7(1), 37–42. https://doi.org/10.18576/msl/070106

  36. [36] Sezgin, A. (2018). A new view on AG-groupoid theory via soft sets for uncertainty modeling. Filomat, 32(8), 2995–3030. https://doi.org/10.2298/FIL1808995S

  37. [37] Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied soft computing journal, 54, 366–392. https://doi.org/10.1016/j.asoc.2016.10.004

  38. [38] Sezgin, A., Atagün, A. O., Çaǧman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New mathematics and natural computation, 18(2), 495–511. https://doi.org/10.1142/S1793005722500247

  39. [39] Rao, M. M. K. (2018). Bi-interior ideals of semigroups. Discussiones mathematicae-general algebra and applications, 38(1), 69. https://doi.org/10.7151/dmgaa.1283

  40. [40] Rao, M. M. K. (2018). A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup. Mathematica morovica, 22(2), 103–115. http://dx.doi.org/10.5937/MatMor1802103M

  41. [41] Rao, M. M. K. (2020). Left bi-quasi ideals of semigroups. Southeast asian bulletin of mathematics, 44(3), 369–376. https://www.researchgate.net/publication/350891820

  42. [42] Rao, M. M. K. (2020). Quasi-interior ideals and weak-interior ideals. Asia Pacific journal of Mathematics, 7, 7–21. https://doi.org/1028924/APIM/7-12

  43. [43] Baupradist, S., Chemat, B., Palanivel, K., & Chinram, R. (2021). Essential ideals and essential fuzzy ideals in semigroups. Journal of discrete mathematical sciences and cryptography, 24(1), 223–233. https://doi.org/10.1080/09720529.2020.1816643

  44. [44] Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Computers and mathematics with applications, 56(10), 2621–2628. https://doi.org/10.1016/j.camwa.2008.05.011

  45. [45] Sezgin, A., & İlgin, A. (2024). Soft intersection almost subsemigroups of semigroups. International journal of mathematics and physics, 15(1), 13–20. https://doi.org/10.26577/ijmph.2024v15i1a2

  46. [46] Sezgin, A., & İlgin, A. (2024). Soft intersection almost ideals of semigroups. Journal of innovative engineering and natural science, 4(2), 466–481. https://doi.org/10.61112/jiens.1464344

  47. [47] Sezgin, A., & Onur, B. (2024). Soft intersection almost bi-ideals of semigroups. Systemic analytics, 2(1), 95–105. https://doi.org/10.31181/sa21202415

  48. [48] Sezgin, A., & İlgin, A. (2024). Soft intersection almost weak interior ideals of semigroups :A theoretical study. Journal of natural and applied sciences Pakistan, 9(17-18), 372-385. https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2834

  49. [49] Sezgin, A., & İlgin, A. (2024). Soft intersection almost tri-ideals of semigroups. Journal of innovative engineering and natural science, 4(2), 466-481. https://doi.org/10.61112/jiens.1464344

  50. [50] Sezgin, A., İlgin, A., & Atagün, A. O. (2024). Soft intersection almost tri-bi-ideals of semigroups. Science & technology Asia, 29(4), 1-13. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/253582

  51. [51] Pant, S., Dagtoros, K., Kholil, M. I., & Vivas, A. (2024). Matrices: peculiar determinant property. Optimum science journal, (1), 1–7. https://www.optimumscience.org/index.php/pub/article/view/9

Published

2024-02-05

How to Cite

Soft Intersection Almost Bi-quasi Ideals of Semigroups. (2024). Soft Computing Fusion With Applications , 1(1), 28-43. https://doi.org/10.22105/scfa.v1i1.26