Predictive Modeling of Agricultural Yield Using Multi-Source Geospatial Data

Authors

  • Nomaan Siraj Department of Computer Sciencekalinga, Institute of Industrial Technology (KIIt) University, Bhubaneswar, Odisha, India.
  • Swayam Swaroop * Department of Computer Sciencekalinga, Institute of Industrial Technology (KIIt) University, Bhubaneswar, Odisha, India.
  • Tanya Raj Department of Computer Sciencekalinga, Institute of Industrial Technology (KIIt) University, Bhubaneswar, Odisha, India.
  • Anubhav Mishra Department of Computer Sciencekalinga, Institute of Industrial Technology (KIIt) University, Bhubaneswar, Odisha, India.

https://doi.org/10.22105/scfa.v1i4.71

Abstract

Accurate prediction of agricultural yield is crucial for ensuring food security and optimizing resource allocation. This project aims to develop a robust predictive model that leverages the power of remote sensing, weather data, and soil information to estimate crop yield accurately. By integrating advanced machine learning and deep learning techniques with geospatial analysis, we strive to improve the precision and reliability of yield forecasts. The proposed methodology involves several key steps: 1) data acquisition and preprocessing, 2) model development and training, and 3) deployment and visualization.

Keywords:

Agricultural yield prediction, Remote sensing, Machine learning, Deep learning, Geospatial analysis, Satellite imagery, Predictive modeling

References

  1. [1] Cracknell, A. P. (2007). Introduction to remote sensing. CRC press. https://B2n.ir/f88362

  2. [2] Potin, P., Rosich, B., Miranda, N., Grimont, P., Shurmer, I., O’Connell, A., & Gratadour, J. B. (2019). Copernicus sentinel-1 constellation mission operations status. IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium (pp. 5385–5388). IEEE. https://doi.org/10.1109/IGARSS.2019.8898949

  3. [3] McCabe, M. F., Houborg, R., & Lucieer, A. (2016). High-resolution sensing for precision agriculture: From earth-observing satellites to unmanned aerial vehicles. Remote sensing for agriculture, ecosystems, and hydrology XVIII (pp. 346–355). SPIE. https://doi.org/10.1117/12.2241289

  4. [4] Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: A review. International journal of remote sensing, 34(17), 6152–6181. https://doi.org/10.1080/01431161.2013.793872

  5. [5] Scown, M. W., Brady, M. V, & Nicholas, K. A. (2020). Billions in misspent EU agricultural subsidies could support the sustainable development goals. One earth, 3(2), 237–250. http://dx.doi.org/10.1016/j.oneear.2020.07.011

  6. [6] Halbrendt, J. M., & LaMondia, J. A. (2004). Crop rotation and other cultural practices. In Nematology: advances and perspectives (pp. 909-930). Centre for agriculture and biosciences international. https://doi.org/10.1079/9780851996462.0909

  7. [7] Yuan, Y., & Lin, L. (2020). Self-supervised pretraining of transformers for satellite image time series classification. IEEE journal of selected topics in applied earth observations and remote sensing, 14, 474–487. https://doi.org/10.1109/JSTARS.2020.3036602

  8. [8] Guyet, T., & Nicolas, H. (2016). Long term analysis of time series of satellite images. Pattern recognition letters, 70, 17–23. https://doi.org/10.1016/j.patrec.2015.11.005

  9. [9] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic segmentation. 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 9404–9413). IEEE. https://doi.org/10.1109/CVPR.2019.00963

  10. [10] Kim, H. S., Song, H., & Jung, J. (2024). Cadastral-to-agricultural: A study on the feasibility of using cadastral parcels for agricultural land parcel delineation. Remote sensing, 16(19), 3568. https://doi.org/10.3390/rs16193568

  11. [11] Kirda, C. (2002). Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Food and agricultural organization of the united nations, deficit irrigation practices, water reports, 22(102), 3–10. https://www.researchgate.net/publication/284039562

  12. [12] Kim, D., Woo, S., Lee, J. Y., & Kweon, I. S. (2020). Video panoptic segmentation. https://doi.org/10.48550/arXiv.2006.11339

  13. [13] Lucas, B., Pelletier, C., Schmidt, D., Webb, G. I., & Petitjean, F. (2020). Unsupervised domain adaptation techniques for classification of satellite image time series. IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium (pp. 1074–1077). IEEE. https://doi.org/10.1109/IGARSS39084.2020.9324339

  14. [14] Ye, W., Zhang, W., Lei, W., Zhang, W., Chen, X., & Wang, Y. (2023). Remote sensing image instance segmentation network with transformer and multi-scale feature representation. Expert systems with applications, 234, 121007. https://doi.org/10.1016/j.eswa.2023.121007

  15. [15] Heidarianbaei, M., Kanyamahanga, H., & Dorozynski, M. (2024). Temporal ViT-U-Net tandem model: Enhancing multi-sensor land cover classification through transformer-based utilization of satellite image time series. International society for photogrammetry and remote sensing annals of the photogrammetry, remote sensing and spatial information sciences, 10, 169–177. https://doi.org/10.5194/isprs-annals-X-3-2024-169-2024

  16. [16] Chuang, Y., Zhang, S., & Zhao, X. (2023). Deep learning-based panoptic segmentation: Recent advances and perspectives. Institution of engineering and technology image processing, 17(10), 2807–2828. https://doi.org/10.1049/ipr2.12853

  17. [17] Elharrouss, O., Al-Maadeed, S., Subramanian, N., Ottakath, N., Almaadeed, N., & Himeur, Y. (2021). Panoptic segmentation: A review. https://doi.org/10.48550/arXiv.2111.10250

  18. [18] Lee, Y., & Park, J. (2020). Centermask: Real-time anchor-free instance segmentation. 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 13906–13915). IEEE. https://doi.org/10.1109/CVPR42600.2020.01392

  19. [19] Singh, Y., Bhatia, P. K., & Sangwan, O. (2007). A review of studies on machine learning techniques. International journal of computer science and security, 1(1), 70–84. https://www.researchgate.net/profile/Pradeep-Bhatia-2/publication/41845861

  20. [20] Poria, S., Cambria, E., & Gelbukh, A. (2016). Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-based systems, 108, 42–49. https://doi.org/10.1016/j.knosys.2016.06.009

  21. [21] Chennupati, S., Narayanan, V., Sistu, G., Yogamani, S., & Rawashdeh, S. A. (2021). Learning panoptic segmentation from instance contours. 2021 IEEE international conference on robotics and automation (ICRA) (pp. 9586–9593). IEEE. https://doi.org/10.1109/ICRA48506.2021.9560798

  22. [22] Petitjean, C., & Dacher, J. N. (2011). A review of segmentation methods in short axis cardiac MR images. Medical image analysis, 15(2), 169–184. https://doi.org/10.1016/j.media.2010.12.004

  23. [23] Roscher, R., Volpi, M., Mallet, C., Drees, L., & Wegner, J. D. (2020). Semcity toulouse: A benchmark for building instance segmentation in satellite images. International society for photogrammetry and remote sensing annals of the photogrammetry, remote sensing and spatial information sciences, 5, 109–116. https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020

  24. [24] Wang, Y. L., Li, L., Zhou, S. W., & Chen, X. (2024). A multi-center polarmask model for image segmentation. Fourth symposium on pattern recognition and applications (SPRA 2023) (pp. 62–70). SPIE. https://doi.org/10.1117/12.3030078

  25. [25] Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using satellite imagery to understand and promote sustainable development. Science, 371(6535), eabe8628. https://doi.org/10.1126/science.abe8628

  26. [26] Herrera, M., Natarajan, S., Coley, D. A., Kershaw, T., Ramallo-González, A. P., Eames, M., … ., & Wood, M. (2017). A review of current and future weather data for building simulation. Building services engineering research and technology, 38(5), 602–627. https://doi.org/10.1177/0143624417705937

  27. [27] Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. Journal of advances in modeling earth systems, 6(1), 249–263. https://doi.org/10.1002/2013MS000293

  28. [28] Gupta, A., & Nahar, P. (2023). Classification and yield prediction in smart agriculture system using IoT. Journal of ambient intelligence and humanized computing, 14(8), 10235–10244. https://doi.org/10.1007/s12652-021-03685-w%0A%0A

Published

2024-12-26

How to Cite

Predictive Modeling of Agricultural Yield Using Multi-Source Geospatial Data. (2024). Soft Computing Fusion With Applications , 1(4), 253-262. https://doi.org/10.22105/scfa.v1i4.71

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.